
TECHNICAL REPORT NO. 532

-L:'i SCT-ftARE TEST AND EVALUATION PANEL (STEP)

SOFTWARE METRICS INITIATIVES REPORT

HENRY P. BETZ
PATRICK J. O'NEILL

APRIL 1993

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Accesion For-..

NTIS CRA&M--
DTIC TAB]
U•,annouiced Q
Justification

By
'Distribution I

Availability Codes

Avail and I or
Disi Special

'VI

ACKNOWLEDGEMENTS

The U.S. Army Nateriel Systems Analysis Activity (AMSAA) recognizes the
following individual for contributing to this report:

Peer Reviewer: Barry H. Bramell, Reliability, Availability, and
Maintainability Division (RAND)

Authors: Henry P. Betz, RAND, Patrick O'Neill, Combat Support Division.

/

a/

iii The next page i s blank.

CONTENTS

PAGE

ACKNOWLEDGEMENTS ... tt

1. INTRODUCTION ... 1

2. MEMBERSHIP1

3. OBJECTIVES ... 1

* 4. METHODOLOGY 1

"5. METRIC CRITERIA .. 2

6. FINDINGS ... 3

7. METRIC SET 4
7.1 Metric: Cost 7
7.2 Metric: Schedule 14
7.3 Metric: Computer Resource Utilization (CRU) 19
7.4 Metric: Software Engineering Environment 24
7.5 Metric: Requirements Traceability 27
7.6 Metric: Requirements Stability 33
7.7 Metric: Design Stability 38
7.8 Metric: Complexity 42
7.9 Metric: Breadth of Testing 49
7.10 Metric: Depth of Testitg 53
7.11 Metric: Fault Profiles 57
7.12 Metric: Reliability 64

8. IMPLEMENTATION CONSIDERATIONS 67
8.1 Qualifying Rules 67
8.2 Grandfathering .. 67
8.3 Data Collection 67
8.4 Life Cycle Application 69

9. TAILORING .. 71

10. JUSTIFICATION FOR METRIC SET 71

- 11. COSTS AND BENEFITS ... 74

12. METRICS DATA BASE 74

13. RECOMMENDATIONS .. 75

14. CONCERNS ... 76

V

CONTENTS (Continued)

PAGE

APPENDIX

A - OPTIONAL METRICS 79
A.1 Metric: Manpower 81
A.2 Metric: Development Progress 85

ACRONYMN 89

DISTRIBUTION LIST .. 93

b

vi

ARMY SOFTWARE TEST AND EVALUATION PANEL (STEP)

SOFTWARE METRICS INITIATIVES REPORT

1. INTRODUCTION

This report documents the efforts and portrays the findings and recom-
mendations of the Army Software Test and Evaluation Panel (STEP) Subgroup on
Measures. The final recommendations include the mandatory use of a minimum,
common set of software metrics in order to better measure and manage software
development from the test and evaluation perspective. This set of measures
should be used to help determine whether the system under consideration has
demonstrated the necessary functionality, maturity, and readiness to proceed
to the next stage of development or testing. This set of metrics is a minimum
set; other metrics of specific interest to a certain agency or point of view
can and should be collected if desired.

Of course, there are many characteristics of the software that need to
be evaluated for quality and conformance but do not lend themselves to
measurement. These quality factors remain important to any evaluation of
software. Metrics are simply one element of a set of tools that should be
used in a software evaluation.

2. MEMBERSHIP

The Measures Subgroup of the STEP was chaired by the U.S. Army Materiel
Systems Analysis Activity (AMSAA). The following organizations participated
in the subgroup activities: AMSAA; Test and Evaluation Command (TECON);
Communications and Electronics Command (CECOM) Concurrent Engineering Direc-
torate; CECON Center for Software Engineering; Armaments, Munitions, and
Chemical Command (ANCCOM) Product Assurance and Test Directorate; Information
Systems Support Command (ISSC); Information Systems Engineering Command
(ISEC); Operational Test and Evaluation Command (OPTEC); Headquarters, Army
Materiel Command (HQ, AMC); the Software Engineering Institute (SEI); Air
Force Operational Test and Evaluation Center (AFOTEC).

3. OBJECTIVES

The objective of the Measures Subgroup was to force Army level focus on
the application of the principles of Total Quality Management (TQM) to the
development and management of software. Specifically, the group's mission was
to develop a common set of measures which can be used throughout the software
life cycle to Judge the maturity and readiness of the software to proceed to
the next stage of development or testing.

4. METHODOLOGY

The Measures Subgroup was formed because the consensus of the STEP was

that measuring software characteristics may help to improve the Army's ability
to manage software development. The subgroup did not by itself study the
current software development, test, and evaluation process; that effort was
undertaken and documented by other STEP subgroups. Hence, the implicit
assumption was that the measurement of software characteristics should be
applied regardless of the process framework.

The problem of developing a set of measures was approached from the
viewpoint that first, it must be determined what was important to measure, and
second, appropriate metrics must be found to measure those important charac-
teristics of the software. The emphasis on TQM meant that both process and
product measures had to be developed, so that the process can continually be
improved.

The group first attempted to capture the state of the Army in software
measurement, as well as the state of the art. These states were examined by
way of literature searches, limited case studies, and discussions with
recognized experts in the academic world, industry, and government.

The group also recognized early on that it was important to have a
tractable set of measures. It was imperative that the most important software
characteristics be measured, while keeping the sheer volume of metrics to a
manageable number. Along the same lines, thought was given to the development
of metrics whose inputs would be relatively easy to collect. These goals were
important in order to avoid yet another exhaustive compendium of metrics. To
be acceptable to both the Army's development community as well as the test and
evaluation community, the set of measures must be necessarily tractable while
covering the entire spectrum of software characteristics that are important to
test and evaluation. The group's concern about having a minimum set of.
metrics was later reinforced and applauded by NASA personnel, who are recog-
nized in many circles as the government leader in the use of software metrics.

5. METRIC CRITERIA

In order to fit the somewhat restrictive guideline of representing a
single, minimum, useful set of measures, it was necessary to establish certain
criteria for accepting a metric.

First, the metric had to address the objectives and mission of the
group. Therefore, focus was placed upon the following areas of interest:
demonstrated results under stress loads, demonstrated functionality, complete-
ness of the development process, and readiness of the product for advancement
to the next milestone or test.

Second, in order for the metric to be useful it was felt that it must be
unambiguous; possess a prescribed method for data gathering and evaluation; be
easy to gather and non-labor intensive to evaluate; be consistently interpret-
ed; prescribe resulting actions that are objective, timely, and finite; and
have intrinsic worth (i.e., demonstrate value-added).

Lastly, the group also agreed that, to the extent possible, question-
naires, weighting schemes, and other subjective techniques would be avoided.

2

6. FINDINGS

The group quickly discovered that there is no shortage of metric ideas.
Indeed, many organizations (government and private sector) use some type of
software metrics, and many academic researchers are pursuing novel ideas and
approaches. The group consensus, as supported by both document reviews and
personal contacts, was that the Army does not in general use metrics to help
measure software readiness. While there are a few pockets of metric use in
the Army, those pockets use metrics in differing fashions. Furthermore, the
use of metrics is not approached in an engineering fashion.

A related problem in the Army (as indicated through the case studies
performed by the STEP) is that even when metrics are specified in documents
like the Test and Evaluation Master Plan (TEMP), the data are often not
collected. Further, in some instances the basic data are collected but are
not reported in a timely fashion.

Through literature searches, months of subgroup efforts, case studies,
and visits to key industrial, government, and academic institutions, the
subgroup arrived at a minimum set of software metrics. This minimum set was
sent through a limited Army staffing. Section 7 describes the recommended
metric set in detail.

3

7. METRIC SET

The recommended minimum metric set is described in this section. In the
course of the subgroup activities, the number of metrics varied between nine
and fifteen. The final outcome was a recommended minimum set consisting of
twelve metrics. Two of the additional three metrics, while not part of the
minimum set, are described in Appendix A as optional. These two metrics
(manpower, development progress) were moved out of the minimum set because of
several reasons: they were among the most costly metrics in terms of data
collection; their basic data are often collected as part of existing program
development or test and evaluation activities; the set of fifteen was deemed
too large. The metric on documentation, which was in earlier versions of the
set, has been deleted entirely, primarily due to the fact that the group
considered it too subjective for purposes of measurement, as well as overly
labor intensive. An assessment of documentation is typically performed as a
routine part of an independent government evaluation.

The metrics are not given in priority order. Rather, we have attempted
to group them in a logical fashion: management metrics, requirements metrics,
and quality metrics. The management metrics (cost, schedule, computer
resource utilization, software engineering environment) deal with management,
contracting, and programmatic issues. The requirement metrics (requirements
traceability, requirements stability) deal with the specification, transla-
tion, and volatility of requirements (reqts). The quality metrics (design
stability, complexity, breadth of testing, depth of testing, fault profiles,
reliability) deal with testing and quality aspects. Cost and schedule, in
addition to being useful as measures, should also be helpful in evaluating the
utility of the other metrics (e.g., as predictors).

The metrics span both process and product measures. However, there is
not a clean delineation between which metrics are process measures and which
are product measures. Indeed, some measures fall into both categories.

Several things must be kept in mind in reading this section.
In keeping with the underlying STEP tenet of encouraging a single Army
software T&E process, an attempt was made to address both systems governed by
the AR 70 series of regulations and those governed by the AR 25 series of
regulations.. That is, the metrics are intended to address a single Army
process for both Materiel Systems Computer Resources (MSCR) (formerly Mission
Critical Computer Resources (MCCR)) and Automated Information Systems (AIS).

Many terms are tied to the life cycle model portrayed in DOD-STD-2167A
and DOD-STD-2168. However, the entire metrics definition activity, as well as
all other STEP activities, has been predicated on the recognition that many
Army systems currently being developed are using a non-traditional system
acquisition model, including several derivatives of the Army Streamlined
Acquisition Program (ASAP). For example, many of today's systems are follow-
ing an evolutionary acquisition strategy (e.g., the Army Tactical Command and
Control System (ATCCS) and its component systems). Some of the systems chosen
as case studies for the Metrics Subgroup (e.g., the All Source Analysis System
and the Maneuver Control System) are being developed using non-traditional

4

strategies. It is the firm belief of the STEP that the metrics can also be
applied to systems using these non-traditional strategies.

In a similar vein, many terms used to depict the software life cycle are
terms which traaitionally pertain to a waterfall software life cycle model.
The metrics r-,n also be applied to systems whose software is being developed
followino ither a "spiral" life cycle model or some other non-traditional
derivative.

While some of the metric descriptions assume that the software is being
developed by a contractor, an attempt has been made to use the term "develop-
er" in lieu of "contractor." In this context, the term "developer" refers to
either a private contractor or an in-house government development activity.
Regardless of who the developer is, the same metrics should be used.

It must also be pointed out that the graphs shown in this section are
merely for illustration. Many trends are possible for each metric. Addition-
ally, there are other ways of processing and dl playing the data to be
collected that may be very appropriate for specific systems.

Finally, it must be stated that the metrics should be used as indica-
tors; they should be used to portray trends over time, rather than placing too
much importance on a calculated value at a single point in time. The trends
can be studied in and of themselves, or they can be compared with trends from
similar systems that have already been built. Within the body of this
section, we have tried to specify rules of thumb for those metrics where
experience seems to indicate that a single value makes sense. As the metrics
become proven, validated entities, numerical thresholds and exit criteria may
emerge. Even as a scientifically validated set, however, the metrics remain
most useful when used as indicators of trends.

Table 7-1 presents a list of the metrics with a summary of the primary
characteristics the metrics are intended to address.

5

do0

4' C 4. 44

0- 4- U 0 *- 4.
4' 41 C . . 4

4. U.
4..- .1- 16 .. @b F

4j. 0.0. . 0 0

be ~ ~ Y UmI@b 4A 0 4 I 44,IVO 16

44 1: "A
0 4A0 4 0 5g

C 4-9 g- 4.06.

S4 C
v~ Yb 0. oe

0 1.- ?A 4A4

I'0 YbS 04 YbF acc 0
Cb Yb 0 -S 4- U U 4 .0 Sj

UA 40 IC Ul 16 US W 4A Ub 0

000~4 0 0#A ~ 0 *
5-. 16 L-. 40' 16 L. L. Yb S. U. 5 ~ *
4.bi4. 4JY 4A16C 4.4. 4.0 4. 4.4 4a O

0 c

0~F "- aa--
Yb 4-I. b 0

"-~~ ~ U-4 P I 0 v

~~4&
4I1~do

7.1 Metric: Cost.

Puroose/Descriotion:

The cost metric provides insights into how well the cost of software
development is being controlled. The metric takes aavantage of existing
acquisition policies with an emphasis added to ensure that software items and
work are properly identified and allocated. It provides visibility of current
cost and overall schedule variances, indications of likely trouble areas,
trends for future costs and overall schedule, and estimated cost at completion
of the development effort.

Additionally, historical data on this metric will be one of the primary
measures of program success or failure. An attempt will be made to correlate
cost (in conjunction with other measures of success/failure (e.g., schedule,
degree of user acceptance)) with the relative predictive value of other
metrics, thus aiding in the validation process.

Life Cycle Application:

Planning for cost data collection begins in the development of a Work
Breakdown Structure (WBS) for each Request For Proposal (RFP), ensuring that
software items are incorporated into the WBS and retained in the Contract WBS
(CWBS). This metric continues through the life of the contract(s). If the
software developer is a government agency, the same cost data must be collect-
ed.

Algorithm/Graohical Disol1a:

Cost data are collected in accordance with current Department of Defense
(DOD) and Department of the Army (DA) policies for Cost/Schedule Control
Systems Criteria (C/SCSC), Cost/Schedule Status Report (C/SSR) or Contract
Funds Status Report (CFSR), whichever is appropriate for the scope of the
overall program effort. Software costs and schedules must be readily identi-
fiable in the reports. This could be accomplished with a WBS that separates
software from other aspects of the program, or through a simple data base
management system that extracts the software metrics data from the larger data
set provided by the developer.

Figures 7.1-1 and 7.1-2 show typical cost/schedule displays. Figure
7.1-1 displays cumulative cost and schedule data using "earned value' and
actual costs relative to that which is planned, while Figure 7.1-2 displays
similar information as deviations from the contract cost/schedule. They can
be cumulative for the whole program or broken out for critical or high risk
area displays.

The following definitions should be used in implementing the cost
metric:

Budgeted Cost of Work Scheduled (BCWS) - the sum of the budgets for all
work packages, the level of effort, and apportioned effort scheduled to be
accomplished within a given time period.

7

Budgeted Cost of Work Performed (BCWP) - the sum of the budgets for
completed work packages and completed portions of open work packages, plus the
applicable portions of the budgets for level of effort and apportioned effort.
BCWP is also called earned value.

Actual Cost of Work Performed (ACWP) - the cost actually incurred in
accomplishing the work performed within the given time period.

Contract budget baseline - the total of the original contract target
cost plus negotiated contract changes plus the estimate cost of all autho-
rized, unpriced work.

Estimated Cost at Completion (EAC) - the sum of all actual costs to date
plus the estimate for work remaining.

Management Reserve (MR) - that portion of the budget withheld for
management control purposes rather than designated for the accomplishment of a
specific task.

In addition to the computation of these basic parameters, the following
values should also be computed:

Cost variance - BCWP - ACWP

Schedule variance - BCWP - BCWS

8

Millions of Dollars
120

EAC°

00 . Contract !2ftt Baseline i

SNo

so- AOW• C ost Variance

40o Cp 'hedule Varlanoc

go-

0C L I IA a I I I I 1 -

0 1 2 8 4 6 6 7 8 9 10 11 12 13 1 15 1617I6S 19
Program Month

Irigure 7.1-1

Cost Performance Trends
Millions of Dollars

20

10 Managlement Re serve •o

}Schedule Variance

-10

-20 Cost Variance

40 I I i p a I I I I I I I I JI I I I

o 1 2 8 4 6 e 7 • o 10 U 11If V 1

Program Month

Figure 7.1-2
9

Data Reouirements:

Cost and schedule data must be collected at least to the level of the
CWBS which provides the following data. Data from lower levels are optional;
reporting is based on the degree of risk that a particular configuration item
presents to the overall program. MIL-HDBK-WBS.SW shows how to configure a
good CWBS that will cover the majority of software costs associated with a
program. Some tailoring may be required to address program peculiarities.

For purposed of the data requirements, the following activity types are
defined:

Software activity types (for total project):
CSCI(s) integration and testing
verification and validation
software project management
software engineering management
software quality assurance
software configuration management

Software activity types (for each CSCI):
requirements analysis
design
coding and unit testing
CSC(s) integration and testing
FQT
problem resolution

investigation
redesign
recoding and unit testing
CSC(s) re-integration and testing

As a minimum, for C/SCSC and C/SSR qualifying systems, the following
data should be supplied for each software activity type listed above:

BCWS
BCWP
ACWP
Schedule Variance
Cost Variance

In addition, the following data should be collected for the total
project:

BCWS
BCWP
ACWP
Schedule Variance
Cost Variance

10

EAC
Management Reserve
$ invested in tools
$ invested in new equipment and facilities

Equipment, facilities, and tools shall include the entire range of new
facilities, equipment, and test program set costs needed to support software
development including compilers, operating costs, and tools. Software quality
costs include all costs associated with the quality support team, including
attendance at configuration audits, document reviews, and related activities.
Verification and validation costs include all costs related to verification
and validation by either the developer or an independent agent.

Freouencv Of Reportino:

monthly

Use/Interoretation:

Cost information is indispensable to both the contractor and govert...ent
program offices. MIL-HDBK-WBS.SW provides guidance in developing well defined
work and cost accounting packages dealing specifically with software effort.
It amplifies the requirements of NIL-STD-881B, "Work Breakdown Structure for
Defense Materiel Items."

When properly identified, reported and interpreted, cost information can
show how the program is progressing. Looking strictly at high level data may
mask underlying problems in a lower level that will manifest themselves in
large program problems downstream if they are not tended to immediately.
Thus, it is prudent to require data for all potentially risky areas. However,
the degree of detail must be leavened with the cost to collect and analyze the
data. Finally, the Program Manager (PH) must look at the data while they are
still fresh so that problems can be addressed immediately.

In financial terms, the cost data measure earned value (BCWP). Each
item in the WBS is assigned a value (budgeted cost) and a time when it must be
completed (schedule). As items are completed, the government receives that
value for an actual cost at an actual time. If the actual cost is equal to or
less than the budgeted cost, things are going well. If the actual cost is
greater than the budgeted cost, it could indicate problems that require
investigation.

More simplistically, BCWS is what you should have paid for what you
should have gotten. BCWP is what you should have paid for what you got. ACWP
is what you paid for what you got. If ACWP is greater than BCWP, the program
is over cost. If BCWS is greater than BCWP the program is behind schedule.
The amount of time behind schedule can be determined by determining the time
distance (horizontally) between the two in Figure 7.1-1. Figure 7.1-2
displays the cost and schedule variances versus management reserve. In these
examples, it should be noted that the program is over cost and behind sched-
ule.

11

In many cases, costs are a good early indicator that there are problems
with a particular item in the program. Excessive costs can indicate addition-
al resources being applied to a tough issue. In software, it could indicate
more programmers, higher level programmers or outside consultants being
assigned to a particular CSCI than planned; it may mean more development tools
or a larger programming environment than forecast; or it could mean a lot of
recoding.

The data required are forward looking as well as historic. The develop-
er is required to provide an estimate at completion for cost and schedule.
The government program manager can use the same data to make his own predic-
tions as well as to forecast the program's future well-being.

As with any data for cost and schedule, the program management office
must ensure at the outset that the estimates are reasonable throughout the
life of the contract. Front loading costs and back loading schedules (high
costs early with most deliveries occurring late) can give early indications of
success in an unhealthy program.

Properly identifying WBS categories in the contract can allow the PH to
look at the resources expended overall in areas such as requirements analysis,
facilities, development equipment/tools, design, coding, testing, rework,
documentation, training, etc. Using a flexible data base management system
could allow the PM to get a good idea of what areas do well and what areas
might need improvement. For instance, the (government or contractor) PM may
see a correlation between higher requirements analysis costs and lower rework
costs. Or, he may see that a particular group has a considerably lower rework
cost than the others; he might then want to examine their development process-
es to see if there are lessons that can be applied to other groups.

At the lower levels of the WBS (software activities), this metric is
used to track software expenditures versus allocations over the life of a
program. Status needs to be determined not only on the present percent of
allocation used, but also in relation to what has been done to date and how
much is yet to be done (fault profiles, breadth of testing, depth of testing,
reliability, (optional) manpower, (optional) development progress). Further
insight into risk can be determined by examining expenditures relating to
rework (i.e., the fixing of faults and changes in requirements). Exceeding
the allocation at any point in time is cause for concern and Investigation.

In addition to being used with the metrics listed in the preceding
paragraph, the cost metric should also be used with the detailed schedule
metric, so that a comprehensive view of cost/schedule performance and status
can be obtained. For example, undesirable cost trends may signal impending
delays of major events or milestones.

12

Rules of Thumb:

For the lower level WBS software activities, management attention needs
to be heightened whenever expenditures are nearing allocated values and much
work is yet to be done. A program review may be necessary in this case and
should be mandatory when an allocation is actually exceeded.

For higher level WBS costs, when it appears that the contractor is going
to exceed his management reserve in his or the government's estimate at
completion, a contractor/government level In Process Review (IPR) should be
required. When it appears that either the contract is going to exceed the
government's management reserve at completion, or the estimate at completion
is going to breach the program baseline, a higher level government IPR should
be required.

References:

"Work Breakdown Structure for Software Cost Reporting", MIL-HDBK-WBS.SW
(Second Draft), I October 1991.

13

7.2 Metric: Schedule.

Purpose/Description:

The schedule metric provides indications of the changes and adherence to
the planned schedules for major milestones, activities, and key software
deliverables. As with the cost metric, the schedule metric takes advantage of
existing acquisition policies with emphasis placed on lower level schedule
considerations to ensure that key milestones, activities, and deliverables are
structured and delivered in a manner that supports overall program success.
It provides visibility of current and overall schedule variances, indications
of likely trouble areas, and trends for the future program schedule.

Also, as with the cost metric, schedule is a primary indicator of
program success or failure, and will be used in the correlation and validation
process described with the cost metric.

Life Cycle Aoolication:

Begin collecting at program start, and continue for the entire software
development.

Alaorithm/Graohical DisDlaV:

Plot current program schedule as shown in Figure 7.2-1. Note that this
displays only the current schedule. Comparisons with previous schedules,
described below, are needed to assess schedule performance.

Plot planned and actual schedules for major milestones and key software
deliverables as they change over time. An example is shown in Figure 7.2-2.

In Figure 7.2-2, the Preliminary Design Review (PDR) and Critical Design
Review (CDR) milestone schedules are plotted over time. Any milestone of
interest can be plotted. Similar plots can also be made for key product
deliverables (e.g., Software Product Specification (SPS)) as well as key
activities (e.g., development of a CSCI). To read the graph, find the actual
date on the x-axis, and read the appropriate planned date on the y-axis. For
example, at month one, the PDR was planned for month two, and the CDR was
planned for month eight. At month two, the PDR schedule has slipped to month
three (a slip of one month), whereas the CDR schedule has remained the same.
At month three, the PDR schedule has slipped to month five (an additional slip
of two months), whereas the CDR schedule has remained the same.

Plot the planned start and end date for key activities, as they change
over time. An example is shown in Figure 7.2-3.

A table showing the schedule and status of start and end dates for key
present and future activities and events should be created. Table 7.2-1 serves
as a representative example of such a table. A negative entry in a Oslip"
column indicates that the date has been moved earlier in time.

14

XYZ PROGRAM SCHEDULE
Poftware E~mnwf)

wk Im mm m as gas M-6
m

mum
12MU

I am off.

NM10dkw U

0 . 1 1 10 21

.14Acua Plonrad Month Mnt

12-r 7a2-

105

Schedule - CSCI2 Development
Planned Program Month

4 I *........ •...............

Start Date

0
0 2 4 6 a10

Actual Program Month

Fligu~re 7.2-3

Table 7.2-1

Milestone, De- Latest Slip Cumulative Latest Slip Cumulative
liverable, Ac- in Start Date Slip in - n End Date Slip in End
tivSty (months) Start Date (months) Date

(months) (months)
PDR 4 5 , N•/A NiA

CDR 3 4 N/A N/A

CSCH Develop- 0 0 00
ment

CSC1]2 Develop- 5 7 34
ment
Integration (t4 2 D

Testing
FQT 2 3 2 3

TT 0 0 -1 -1

OT 0 0 0 0

16

Data Reauirements:

For the purposes of these data requirements, milestones and deliverables
occur at a single point in time, whereas activities span a given time period.
Therefore, unlike milestones and deliverables, activities have both a start
date and an end date.

for each milestone and deliverable:

(examples of milestones are System Design Review (SDR), System Require-
ments Review (SRR), Software Specification Review (SSR), PDR, CDR, Army System
Acquisition Review Council (ASARC)/Major Automated Information System Review
Council (MAISRC))

(examples of software deliverables are Software Development Plan (SDP),
"SPS, System/Segment Specification ISSS), Interface Requirements Specification
(IRS), Version Description Document (VDD), Software Requirements Specification
(SRS), Software Design Document (SDD), Software Test Plan (STP), Software Test
Description (STD), Software Test Report)

initial planned date
present planned date
actual date

for each activity:

(examples of activities are CSCI development, Formal Qualification Test
(FQT), Functional Configuration Audit (FCA), Physical Configuration Audit
(PCA), Technical Test (TT), Operational Test (OT))

initial planned start date
present planned start date
actual start date
initial planned end date
present planned end date
actual end date

Freouencv of Reporting:

monthly

Use/Interoretation:

The schedule metrics, when plotted as they change over time, provide
indications of problems In meeting key events or deliveries. These metrics
examine schedule considerations at a finer resolution than the cost metric.

Obviously, the higher the slope of the trend line for each milestone or
event slippage (such as that shown in Figure 7.2-2), the more problems are
being encountered. Milestone slippages should be investigated. Potential
clustering (i.e., bunching up in time) of key events should be guarded
against. Figure 7.2-2 indicates a "bunching upw of the two main design
reviews (PDR and CDR). Such a condition may possibly indicate a compressed
phase of activity, which may be an early warning sign of problems.

17

In a similar fashion, the key present and future activities should be
examined using plots similar to that shown in Figure 7.2-3. Such portrayals
can illuminate slips in schedule, as well as possible compressions or expan-
sions of the activity's duration.

An additional method for analyzing the schedule for activities and
events is to create and analyze a table similar to Table 7.2-1. Compression
or expansion within an activity can be viewed by comparing the time allocated
to it as reflected in the "latest slip" column, to the time allocated to it
previously. Compression or expansion among events and activities can be seen
by looking at relative start and end dates between them.

The schedule metric should be used in conjunction with several other
metrics to help judge program risk. For example, it should be used with the
test coverage metrics to determine if there is enough time remaining on the
current schedule to allow for the completion of all testing.

The schedule metric passes no judgement on the achievability of the
developer's initial schedule.

Rules of Thumb:

No formal rules for the trend of the schedule metrics are given.
However, large slippages or compressions are indicative of problems. Maintain-
ing conformance with calendar driven schedules should not be used as the basis
for proceeding beyond milestones.

References:

None.

18

7.3 Metric: ComDuter Resource Utilization (CRU).

Purpose/Description:

This metric is intended to show the degree to which estimates and
"mieasurements of the target computer resources (central processing unit (CPU)
capacity, memory/storage capacity, and input/output (I/O) capacity) used are
changing or approaching the limits of resource availability and specified
constraints. Overutilization of computer resources can have serious impacts
on cost, schedule, and supportability. Approaching resource capacity may
necessitate hardware change or software redesign. Exceeding specified reserve
requirements can have similar impacts in the post deployment phase. Proper
use of this metric can also assure that each resource in the system has
adequate reserve to allow for future growth due to changing or additional
requirements without requiring redesign. This metric can be applied to a
system architecture which is distributed or centralized.

Life Cycle AoRlication:

Early in the design phase, utilization budgets should te established for
each processor and I/O channel in the system. Memory/storage usage budgets
should be allocated ti all computer software units (CSUs) (i.e., the lowest
design element that is separately testable), computer software components
(CSCs), computer software configuration items (CSCIs), and temporary and
permanent data files early in the design phase. Based on these estimates,
each device (CPU, I/O, and memory/storage) should be sized so that only half
of the available capacity of the device is utilized. These targets should be
documented in the SSS and analyzed with respect to current estimates at each
design review.

All changes to these initial estimates should be reported, including
those caused by hardware modifications. For the memory and I/O categories,
actual usage should be measured monthly during coding, unit testing, integra-
tion testing, CSCI testing and system level testing. For the CPU usage
statistic, measurements should be taken monthly after the beginning of unit
testing. Actual utilization should be formally demonstrated at the system
level for each resource under peak loading conditions during FQT, and during
Post Deployment Software Support (PDSS) if additional capability is added.

Algorithm/Graphical DisolaY:

The allocation for each resource type should not exceed the target upper
bound utilization for any category (for some systems, the allocation equals
the target upper bound).

CPU and I/O resource utilization are typically measured by the system.
While the measurements contribute slightly to system overhead, the feature
typically comes with the system in its off the shelf configuration. In
instances where the system does not measure itself in term of CPU and I/0
utilization, the percent utilization must be measured using appropriate
instrumentation or test hooks; it is recognized that these tools may add to
system overhead.

19

For memory/storage resources, the percent utilization must be computed.
For memory, the resource is random access memory (RAM), and usage must be
measured with dynamic analysis tools. For storage, the resources include disk
space and other mass storage. For those elements of the software that do not
change (e.g., the source code in terms of CSUs, CSCs), measurement can be
easily done with straightforward operating system commands that measure the
amount of used and free space on a device. For those elements of the software
that change (e.g., temporary and permanent date files), these resources must
be measured on the fly with dynamic analysis tools or with the periodic,
interrupt-driven use of static tools. Again, the percent utilization should
be computed with respect to the devices, and not the components that happen to
be stored on those devices.

Local Area Networks (LANs) and data buses should also be considered as
resources; data should be recorded and reported separately as with any other
resource.

As software development proceeds, the measured values for each category
should be projected out to the "full" system. For example, if half of the
"size" of the software is built and measured, the projected alue for utiiza-
tion would be the actual for the portion built and measured a date plus the
budgeted portion yet to be added.

In Figure 7.3-1, target upper bound utilization is shown as a straight
line. In reality, the target upper bound utilization can change over time.
The sample shown represents the utilization of a single CPU resource; similar
graphs or tables should be constructed for the utilization of all other CPUs
plus each I/O and memory resource.

20

Computer Resource Utilization
% utilization CPU1

100

80

60

40

20

0 I I

0 2 4 a 8 10 12 14
Program Month

Projected -1- Actual - Target Upper Bound

Figj~re 7.3-1

Data Reauirements:

(Notes:

I. Usage should be measured during peak operational loading periods and
should include the operating system and non-developer supplied software as
well as the development software.

2. Where "target" is used in these data elements, it is actually meant
to construe the target upper bound.)

date of report
for each CPU:

unique identifier
initial target CPU usage (percent of capacity)
present target CPU usage (percent of capacity)
actual CPU usage (percent of capacity)
projected CPU usage (percent of capacity)

for each I/0 channel (and LAN or data bus as appropriate):
unique identifier
initial target I/O usage (percent of capacity)
present target I/O usage (percent of capacity)

21

actual 1/0 usage (percent of capacity)
projected I/0 usage (percent of capacity)

for each RAM memory resource:
unique identifier
capacity of resource (in bytes)
initial target upper bound (in bytes)
present target upper bound (in bytes)
actual usage (in bytes)
projected usage (in bytes)

for each mass storage device:
unique identifier
capacity of device (in bytes)
initial target upper bound (in bytes)
present target upper bound (in bytes)
actual usage (in bytes)
projected usage (in bytes)

Freauencv of Reeorting:

initial targets : monthly starting with SSR
all other values : monthly starting with CDR

Use/Interpretation:

Resource utilization tends to increase over the development of a
project. Therefore, adequate planning must be done up front to ensure that
the software's operation does not put undue demands on the target hardware's
capabilities. This measure allows one to track utilization over time to make
sure that target upper bound utilization is not exceeded and that sufficient
excess capacity remains for future growth and for periods of high stress
loading.

In multiprocessor environments, each processor should be targeted and
tracked separately.

Tailoring may be appropriate for situations when dynamic allocation,
virtual memory, parallel processing, multitasking or multi user-based features
are employed.

In instances where the development and target environments differ in
types and/or capacities, caution must be taken in computing and analyzing the
measures. Translations are acceptable up to a certain point, but testing on
the target hardware must take place as early as possible.

Initial estimates should be retained for comparison with what is finally
achieved in order to aid in scoping future programs.

In addition to collecting utilization data throughout the build up of
contractor testing (including single thread to multiple thread), measurements
should also be taken during system level stress testing.

22

During development, it is important to look at both actual and projected
values in relation to the target upper bound values. If either exceeds the
target values, extra attention should be paid to assure that the projections
decay to below the target upper bound value by project completion. If it is
apparent from the projections that the target upper bound limits will be
exceeded, action must be taken to either optimize the software or upgrade the
capability of the target configuration.

It should be noted that sudden drops in utilization may reflect either
new system capacity or new software that embodies more efficient programming.

Computer resource utilization metrics should be used in conjunction with
the test coverage/success metrics (breadth and depth of testing) to ensure
that measures of the actual usage are representative and portray the entire
system under realistic stress loads. If the optional development progress
metric is available, computer resource utilization metrics should be used in
conjunction with development progress to ensure remaining development can be
accommodated without exceeding planned utilization.

Computer resource utilization provides the link to total system perfor-
mance. As mentioned previously, on many computer platforms, the data are
relatively easy to collect (indeed, often self-measured), and are often built
in to the overhead of the system. On other platforms, however, the data may
have to be collected, which will contribute some small amount to system
overhead.

Rules of Thumb:

For embedded/tactical systems, design for no more than 50 percent
utilization for memory/storage, CPU, and I/0 resources. For information area
systems, a higher target upper bound value may be allowable, but should be
specified in the requirements documents. Performance may deteriorate when
utilization exceeds 70 percent for time critical applications. Schedule and
cost can be severely impacted as utilization exceeds 90 percent.

For systems employing virtual memory architectures, usage of RAN is not
as important as measuring the amount of swapping that occurs during peak load
periods.

If, at any time during development, actual or projected computer
resource utilization exceeds target upper bound utilization, an Immediate
review must be held. Corrective action (e.g., software redesign, hardware
upgrades, etc.) must be taken before proceeding to the next stage of develop-
ment.

References:

"Software Reporting Metrics", The Mitre Corporation, ESD-TR-85-145,
November 1985.

"Software Management Indicators", Air Force Systems Command, AFSCP 800-
43, January 31, 1986.

23

7.4 Metric: Software Enaineering Environment.

(Note: Much of the information below has been extracted directly from
the referenced SE! report).

PurooseiDescriotion:

The software engineering environment rating is used to provide an
indication of the developer's typical use of modern, accepted software
engineering principles (e.g., the use of structured design techniques, the
extent of tool usage, the use of program design languages (PDL), etc.) in the
development of software. If practical, aspects of the methodology could also
be applied to materiel developer personnel or the program manager's matrix
support staff for the purpose of assessing capabilities with respect to
software development.

SE! has defined four types of evaluations/assessments; self, government,
SEI-assisted, and commercial. The most rigorous, and therefore the most
desired, are either the government or SEI-assisted evaluations. However, they
are also the most costly, and may not be practical for small programs.
Therefore, any of the four are acceptable, but should be performed for each
subdeveloper working on the project.

Life Cycle ADnlication:

At each major milestone where developers will be selected or assigned.

Alaorithm/Graohical Disolav:

Follow SE! methodology, which includes the following:
Collect questionnaire data from developer.
Conduct follow up visit (assessment team) to answer further

questions, observe tools, etc.
Perform assessment.
Calculate process maturity levels, which are broadly defined

as possessing the following characteristics :

1. Initial -
ill-defined procedures and controls
no consistent application of software engineering management to the pro-

cess
no use of modern tools and technology

2. Repeatable -

management of costs and schedules
use of standard methods and practices for managing some software
development activities

3. Defined -

software development process well-defined in terms of software engineer-
ing standards and methods

increased organizational focus on software engineering

24

use of design and code reviews
internal training programs
establishment of software engineering process group

4. Managed -
software development process is quantified, measured, and

well-controlled
decisions are based on quantitative process data
use of tools to manage design process
use of tools to support data collection and analysis
accurate projection of expected errors

5. Optimizing-
major focus on improving and optimizing process
sophisticated analysis of error and cost data
employment of error cause analysis and prevention studies
iterative improvement of process

Data Reauirements:

Name of (sub)developer.
Type of assessment/evaluation.
Results of SEI rating (numerical rating and list of key process areas).

Freauencv of Reportina:

Once for each developer selection process. If desired, within a long
development phase, additional ratings can be performed if desired (e.g., if a
phase of Engineering & Manufacturing Development has been ongoing for 5 years,
and will be continuing for several more years, perhaps another evaluation or
assessment of the developer(s) should be performed).

Use/Interpretation:

The software engineering environment rating provides a consistent
measure of the capability of a developer to use modern software engineering
techniques in his development process, and therefore his capability to instill
such principles and characteristics in the product. Obviously, it can be seen
from the definition of each rating level that higher is better. The basic
assumption to this approach is that a quality process results in a quality
product. The other eleven metrics, as well as other evaluation techniques,
should be used to examine the quality of the product.

The primary use of the software engineering environment rating is during
the source selection process. However, besides the use as a tool with which
to relatively compare the ability of developers, the use of the software
engineering environment rating may encourage contractors to improve their
software development process in order to increase their rating. A higher
rating will increase the developer's chance of being selected for future
software development projects.

25

In addition to the numerical rating which summarizes the developer's
software process maturity, the subelements which comprise the rating, called
key process areas, can be examined to determine relative strengths and
weaknesses within a rating band. Additionally, the developer may have
demonstrated capability on certain individual process areas that are indica-
tive of a higher rating level. The weaker process areas are those which
should be targeted for improvement in order to move forward to a higher
rating.

It is commonly believed that a metrics program will be cheaper to
implement for developers who possess a high SEE rating.

Rules of Thumb:

On a relative basis, the process maturity levels of various contractors
can be compared. The SEI reports that currently, only a very small percentage
(i.e., 2 or 3 %) of companies have achieved ratings of level 3, 4, or 5. Most
companies are rated at level 1 or 2.

References:

"A Method for Assessing the Software Engineering Capability of Contrac-
torso, Carnegie-Mellon University Software Engineering Institute Technical
Report CMU/SEI-87-TR-23, September 1987.

26

7.5 Metric: Reouirements Traceability.

Puroose/Descri Dton:

The requirements traceability metrics are used to measure the adherence
of the software products (including design and code) to their requirements at
various levels. It also aids the combat developer, materiel developer, and
evaluators in determining the operational impact of software problems.

Life Cycle AoDlication:

Begin tracing during user requirements definition phase, in support of
requirements reviews, PDR, CDR, milestones, and major releases.

AlgorithwdGraohical DiOslav:

This metric is a series of percentages, which can be calculated from the
matrix described below.

Trace all Operational Requirements Document (ORD) requirements for
automated capabilities to the Users' Functional Description (UFD). Identify
any ORD requirements for automated capabilities not found in the UFD. Calcu-
late the percentage of ORD requirements for automated capabilities in the UFD.

Trace all UFO requirements by priority to the system specification (SS)
(either a SSS, Prime Item Development Specification, or Critical Item Develop-
ment Specification). Identify omissions. Calculate the percentage of UFD
requirements that are in the SS.

Trace all software-related SS requirements to the SRS(s) and IRS(s).
Identify omissions.

The software requirements as specified in the SRS(s) and IRS(s) must
then be traced into the software design, code, and test cases. The other
percentages that must be calculated are:

% software requirements in the CSCI design
% software requirements in the CSC design
% software requirements in the CSU design
% software requirements in the code
% software requirements which have test cases identified

27

The technique to be used in performing this analysis is the development
of a software requirements traceability matrix (SRTh). The SRTN is the
product of a structured, top-down hierarchical analysis that traces the
software requirements through the design to the code and test documentation.
The SRTM should contain information similar to Table 7.5-1. A dendritic
numbering is shown for some columns. The software specifications and require-
ments should be listed in groups which represent higher order system require-
ments. In this manner, the grouping of CSUs which represent a required system
function can be readily seen. Also, it is good practice to trace the require-
ments at additional levels between design and code. For example, they can be
traced to functional decomposition documents, flow diagrams, data dictionar-
ies, etc.

28

~00
- -- - - -cc

a.
S

U, U-

I I

de

I-V-

- - -- -W16 -----

U ~ w 529

The SRTM will be completed to various degrees depending upon the current
stage of the software life cycle and should be part of the Technical Data
Package. From the SRTM, statistics can be calculated indicating percentage of
tracing to various levels.

In some instances, it might be interesting to perform a backwards trace
(e.g., from code to requirements). In lieu of creating another matrix, one
can simply make a list of the distinct entries and compare with a total count
of the entries for the column of interest. To carry the example of doing a
backwards trace from code to requirements further, one would make a list of
all the distinct CSUs which appear in the "code* column of the SRTh. This
list should then be compared with the total list of CSUs for the system. Any
CSU which does not appear in the 'code* column may not support any require-
ment. These CSUs should be investigated.

Data Reauirements:

list of requirements and design specifications
(ORD, UFD, SS, SRS, IRS, SDD)

completed SRTM
software test description in accordance with DOD-STD-2167A
number of ORD requirements for automated capabilities:

total
traceable to UFD
not traceable to UFD

number of UFD requirements:
total
traceable to SS
not traceable to SS

number of SS software requirements:
total
traceable to SRS/IRS
not traceable to SRS/IRS

for each CSCI, number of SRS requirements:
total
traceable to CSCI design
traceable to CSC design
traceable to CSU design
traceable to code
having test cases for all of its CSUs

number of SRS requirements not traceable to UFD

Freouencv of Reoorting:

update periodically in support of requirements reviews, milestones and
major releases.

Use/InterDretation:

As can be seen in the algorithm above, the tracing of requirements must
occur at several levels. This tracing should be a key government tool at all
system requirement and design reviews. It can serve to indicate those areas

30

of requirements or software design that have not been sufficiently thought
out. The trend of the SRTM should be monitored over time for closure.

By the nature of the software development process, especially in
conjunction with an evolutionary development strategy, the tracing of require-
ments will be an iterative process. That is, as new software releases add
more functionality to the system, the trace of requirements will have to
be revisited and augmented.

Although not portrayed graphically above, trends of requirements
traceability can be shown over time. For example, during the requirements
phase, the percent of UFD requirements traced into the SRS can be depicted
over time.

One of the important new characteristics that will be embodied in the
UFD is a grouping of requirements by four priority levels. Such a prioritiza-
tion should be used with the SRTH to highlight certain key user functions. In
cases where there are vast numbers of requirements, a common sense approach
would be to attack the UFD priority one requirements first.

Another benefit of requirements traceability is that those modules which
appear most often in the matrix (thus representing the ones that are most
crucial in the respect that they are required for multiple functions or
requirements) can be highlighted for earlier development and increased test
scrutiny.

The requirements traceability metrics should be used in conjunction with
the test coverage metrics (depth and breadth of testing). It is important to
note that tracing to a test case passes no judgement on the sufficiency of the
test case(s). Rather, an entry in the SRTM only indicates that at least one
test case exists. Further, the SRTM does not address the conduct or outcome
of any testing. Breadth and depth of testing must be used to glean test
coverage and success for particular requirements. The requirements traceabil-
ity metrics should also be used with the (optional) development progress
metric to verify if sufficient functionality has been demonstrated to warrant
proceeding to the next stage of development or testing. They should also be
used in conjunction with the design stability and requirements stability
metrics.

Due to the detailed nature of these requirements traceability metrics,
they should be a normal product of the V&V effort. The SRTM may be generated
by the developer, but it must be verified by an independent agent such as the
IV&V contractor, with coordination from the Test Integration Working Group
(TIWG) and Computer Resources Working Group (CRWG).

During PDSS, if a function is modified, the SRTN can be used to focus
regression testing on a particular CSCI/CSC/CSU.

Finally, it should be noted that some software requirements that are
qualitative in nature (e.g., user friendliness) cannot be traced to specific
design and code. It remains paramount, however, that these requirements be
evaluated by other means.

31

Rules of Thumb:

Do not approve UFD until all ORD requirements for automated capabilities
have been traced into it.

Do not proceed beyond SSR until all UFD requirements have been traced
into the SS.

Do not proceed beyond CDR until a high trace percentage exists from the
ORD to the design at CSCI, CSC, and CSU level.

Do not proceed to formal government testing until, at a minimum, all "'

priority one requirements have been traced into the code and have test caset-,
identified.

References:

Operational Requirements for Automated Capabilities, Draft DA Pamphlet
XX-XX, 2 January 1992.

32

7.6 Metric: Reauirements Stability.

PurDose/DescriDtion:

The metrics on requirements stability indicate the degree to which
changes in the software requirements or changes in the developer's understand-
ing of the requirements affect the software development effort. It also
allows for determining the cause of requirements changes.

Life Cycle AD~lication:

Begin collecting during user requirements definition phase. Measure
requirements with respect to the UFD before Milestone (MS) II. Measure
requirements with respect to the SRS/IRS after MS II.

33

Alaorithu/Graohical DisRlav:

Requirements Stability
70eqts Dlseopancles

0°o ° ° ° ° ° ° ° °. ° °. o °...o .°° o ° ° ° ° °° o •. ° °..

50 1 °°°°°°°'°°°°'°°'°°

40°'°".... °°°...... °°°°°° °°°°

30

0

01
0 2 4 6 a 10 12 1

Program Month

cumulative -4- cumulative closed

Figure 7.6-1

34

Requirements Stability
Percent LOCe Changoed, CSCI2

16

14-

12-

10-

8-

8-

4-

2-

0-
1 2 3 4 6 6 7 8 9 10 11 12

Program Month

Figure 7.6-2

Figure 7.6-1 shows cumulative requirements discrepancies (number of
requirements added + number of requirements deleted + number of requirements
changed) over time versus closure on those discrepancies. Figure 7.6-2 is a
representation of the effect of requirements discrepancies on the code
(percent of lines of code (LOC) changed by month). In actuality, one wants to
develop several versions of the second chart. One version should show the
number of user-initiated requirements discrepancies and the number of develop-
er-initiated requirements discrepancies. The second version should show the
percent LOC affected by user-initiated discrepancies and the percent LOC
affected by developer-initiated discrepancies. Additionally, one might want
to look at the number of modules affected by both types of requirements
discrepancies.

Data Reauirements:

number of requirements discrepancies
number of software requirements added by user
number of software requirements deleted by user
number of software requirements modified by user

35

number of software requirements added by developer
number of software requirements deleted by developer
number of software requirements modified by developer

monthly status (cumulative total and total number resolved) of
above discrepancies

number of modules affected by user-initiated requirements
discrepancies

number of modules affected by developer-initiated requirements
discrepancies

total number of LOCs
for each CSCI

number of LOC affected by approved Engineering Change
Proposals - Software (ECPs-S) due to user-initiated requirements
discrepancies

number of LOC affected by approved ECPs-S due to developer-
initiated requirements discrepancies

Note: For definition of LOC see Complexity metric.

Freouencv of Reportina:

monthly and at major reviews

Use/Interpretation:

When a program is begun, the details of its operation and design are
rarely complete, so it is normal to experience changes in the specifications
as the requirements become better defined over time. (Note: it is believed
that rapid prototyping can help to alleviate this problem, or at least to
cause the refinement to happen early in development). When design reviews
reveal problems or inconsistencies, a discrepancy report is generated.
Closure is accomplished by modifying the design or the requirements. When a
change is required that increases the scope of the project, an ECP-S is
submitted.

The plot of open discrepancies can be expected to spike upward at each
review and to diminish thereafter as the discrepancies are closed out. For
each engineering change, the amount of software affected should be reported in
order to track the degree to which ECPs-S increase the difficulty of the
development effort. Only those ECPs-S approved by the configuration control
board should be counted. Good requirements stability is indicated by a
leveling off of the cumulative discrepancies curve with most discrepancies
having reached closure.

The later in development a requirements discrepancy occurs, the more
impact it has on the program. Those discrepancies which occur before design
and coding don't affect nearly as much as those which occur after design has
started. Those discrepancies which occur during design can impact previous
design work. The worst case is when both design and code are affected. The
impact of the changes can be seen by looking at the number of LOCs changed.
The cause of these changes can be evaluated by examining both Requirements
Stability and Design Stability together. If design stability is low and

36

requirements stability is high, the designer/coder interface is suspect. If
design stability is high and requirements stability is low, the interface
between the user and the design activity is suspect. If both design stability
and requirements stability are low, both the interfaces between the design
activity and the code activity and between the user and the design activity
are suspect.

The metrics for requirements stability should also be used in conjunc-
tion with those for requirements traceability, fault profiles, and the
(optional) development progress.

Allowances should be made for higher instability in the case where rapid
prototyping is utilized. At some point in the development effort, the
requirements should be firm so that only design and implementation issues will
cause further changes to the specification.

As mentioned previously, it is recognized that LOC is somewhat dependent
on.both the application language as well as the style of the programmer. The
key is to watch for significant changes to the measure over time, given that
consistent definitions are used.

Rules of Thumb:

No formal values are given, but a high level of instability at the CDR
stage indicates serious problems that must be addressed prior to proceeding to
coding. For MSCR systems, requirements stability should be high by MS II.

References:

"Software Reporting Metrics", The Mitre Corporation, November 1985.

37

7.7 Metric: Desian Stability.

PurDose/Descriotion:

Design stability is used to indicate the amount of change being made to
the design of the software. The design progress ratio shows how the complete-
ness of the design is progressing over time and helps give an indication of
how to view the stability in relation to the total projected design.

Life Cycle ADplication:

Begin tracking at PDR and continue for each version until completion.

Algorithm/Graphical Displav:

A design related change is defined as a modification to the software
that involves a change in one or more of the following:

1) algorithm
2) "units" (i.e., kilometers, miles)
3) interpretation (definition) of a parameter
4) the domain of a variable (i.e., range of acceptable values)
5) interaction among CSUs
6) more than one CSU

M - number of modules in current delivery/design
Fe - number of modules in current delivery/design that include

design related changes from previous delivery
FS - number of modules in current delivery/design that are

additions to previous delivery
Fd - # modules in previous delivery/design that have been

deleted
T - total modules projected for project

S (sta'!ility) = [M - (Fa + Fc + Fd)] / M

DP (design progress ratio) - M/T

Notes:

1. Although not indicated in Figure 7.7-1, it is possible for stability
(S) to be a negative value. This may indicate that everything previously
delivered has been changed and more modules have been added or deleted.

2. If some modules in the current delivery are to be deleted from the
final delivery, it is possible for design progress (DP) to be greater than
one.

38

Design Stability /Progressa
1.2

0 .8 ÷

0 .6

0 .4

0 .2

0 2 4 8 8 10 12 U4
Program Month

-'-Stabllity --- Design Progress

71g9LlX4 7.7-1

Data Regutrements:

For each version number:
date of completion

fi:
Freauency of Reoortina:

monthly or at each delivery

"." Use/Interpretation:

Design stability should bemonitored to determine the number and
potential impact of design changes, additions, and deletions on the software
configuration. The trend of design stability over time and releases provides
an indication of whether the software design is approaching a stable state,
that is, a leveling off of the curve at a value close to or equal to one. In

39

addition to a high value and level curve the following other characteristics
of the software should be exhibited:

- requirements stability is high
- depth of testing is high
- the fault profile curve has leveled off and most Software

Trouble Reports (STRs) have been closed
- the (optional) development progress metric is high

Caution must be exercised, however, due to the fact that this metric does not
measure the extent or magnitude of the change within a module.

The higher the stability, the better the chances of a stable software
configuration. However, a value close to one is not necessarily good unless N
is close to the total number of modules required in the system (DP approaching
1), and the magnitude of the changes being counted are relatively small and
diminishing over time; without so doing, periods of inactivity could be
mistaken for stability.

When changes are being made to the software, the impact on previously
completed testing must be assessed.

Allowances for exceptional behavior of this metric should be made for
the use of rapid prototyping. It is thought that rapid prototyping, while
possibly causing lower stability numbers (i.e., higher instability) early in
the program, will positively affect the stability metric during later stages
of development.

It should be noted that not all changes made to the software are design
related. For example, the insertion of additional comments within the code
does not change the design of the software.

The design stability metric can be used in conjunction with the complex-
ity metric to highlight changes to the most complex modules. It can also be
used with the requirements metrics to highlight changes to modules which
support the most critical user requirements.

Finally, it must be pointed out that the design stability metric does
not assess the quality of the design. Other metrics (e.g., complexity) can
contribute to such an evaluation.

Rules of Thumb:

No hard and fast values are known at this time. However, allowances
should be made for lower stability in the case of rapid prototyping or other
development techniques that do not follow the standard waterfall model for
software development. In either case, an upward trend with a high value for
both stability and design progress is recommended before acceptance for
government testing. A downward trend should be cause for concern.

40

Experiences with similar projects should be used as a basis for compari-
son. Over time, potential thresholds may be developed for similar types of
projects.

References:

"Draft Guide for the Use of Standard Dictionary of Measures to Produce
Reliable Software', IEEE Computer Society, May 1988.

41

7.8 Metric: Com2lexity.

PurRose/Descriotion:

Complexity measures give an indication of the structure of the software
and provide a means to measure, quantify and/or evaluate the structure of
software modules. It also indicates the degree of unit testing which needs to
be performed. It is commonly believed that the more complex a piece of
software is, the harder it is to test and maintain. Additionally, it is
widely felt that a highly complex module is more likely to contain embedded
errors than a module of lower complexity. Accordingly, lower complexity
ratings reflect software that is easier to test and maintain, thus logically
resulting in fewer errors and lower life cycle costs.

McCabe's cyclomatic complexity metric measures the internal structure of
a piece of software.

Halstead's metrics estimate a program's length and volume based on its
vocabulary (operators and operands).

Other simpler complexity metrics are control flow, the number of
executable lines of code per module (relates to the ease of understanding and
maintaining the module), and the percent comment lines.

Life Cycle Application:

Begin collecting McCabe's cyclomatic complexity metric at PDR stage.
Begin collecting other complexity metrics at CDR, as the modules are placed
under developer configuration control. Revisit during PDSS activities.

Alaorithm/GraDhical Displav:

(Note: As used below, the term "module" is meant to be equivalent to CSU.)

McCabe cyclomatic complexity metric
Let E - # of edges (program flows between nodes; i.e., branches)

N - # of nodes (groups of sequential program statements)
P - # of connected components (on a flow graph, it is the

number of disconnected parts)

Compute:
Cyclomatic Complexity : C - E - N + 2P

The quickest way to gain a basic understanding of the cyclomatic
complexity metric is to graphically portray the structure of a module. Figure
7.8-1 depicts a flow graph of a module, along with its associated complexity
calculations.

There are additional ways of calculating cyclomatic complexity. One such
way is to calculate the number of control tokens + 1. Control tokens are
programming language statements which in some way provide decision points
which modify the top-down flow of the program. In other words, statements

42

such as IF, GOTO, CASE, etc., are considered to be control tokens since they
base program flow upon a logical decision thereby creating alternative paths
which program execution may follow. A CASE statement would contribute (N - 1)
to complexity, where N is the number of cond'tions or cases associated with
the statement.

Figure 7.8-2 portrays a histogram of a CSCI's modules by compleytty.

Halstead metric
Let n1 - # distinct operators

n - # distinct operands
N1 - total # occurrences of the operators
N2 - total # occurrences of the operands

Compute:
Vocabulary : v - n, + n.
Program Length : L -N + N
Volume : (lg 2v)

Control flow metric :
Count the number of times in each module where control paths

cross ('knots"). (For example, a GOTO statement would cause a knot
to occur in the module's flow graph).

Non-comment, non-blank, executable and data statements (herein referred to as
LOC) per module metric :

count the number of non-comment, non-blank executable and data state-
ments in each module.

Percent comment lines metric :
Let C - # comment lines in module

T - total # non-blank lines in module
Compute :

Percent comment lines (C / T) * 100

43

Table 7.8-1 summarizes the various subelements of the complexity metric:

Table 7.8-1

Metric Measure

Cyclomatic Complexity f independent paths

Halstead volume (operators/operands)

Control Flow # times paths cross

LOC size

% comment lines degree of self-documentation

Flow Graph

0 - node (N)

o - decilele Point
DI 4 - edge, (E)

P - connected components

D3 C E -N *(2 *P)

10 - 8 " '(2 *"1)

.4

Figure 7.8-1

44

McCabe CyI~omatie CnMplexltv

0 Modules

100'

40"

20"

0
0-6 410- 10-M 1-20 W0-25 :2-80 80-36 86-40

Complexity

- 08013 (200 modules)

Figure 7.8-2

Data Reouirements:

for each module
1 anguage
version number of language
source code
number of nodes
number of edges
number of connected components
number of distinct operators
number of distinct operands
total number of occurrences of the operators
total number of occurrences of the operands
number of times in each module where control paths cross
number of LOCs per module
percent comment lines
all complexity input data and results of calculations listed above
each of the above complexity values

Freauencv of ReRorttna:

monthly, for any module that has changed.

45

Use/InterDretation:

Automated tools are available and should be used to assist in the
computation of the complexity measures. There are tools to construct the flow
graph depicted in Figure 7.8-1; other tools are available to compute the
various complexity metrics.

This metric is used throughout the software life cycle. Requiring the
complexity limit as a contractual requirement will stimulate structured
programming techniques, thereby impacting design by limiting the number of
"Obasis" paths in a program at the design and coding stages. It is used during
software testing to identify basis paths (i.e., critical paths), to define and
prioritize the testing effort, and to assess the completeness of CSU testing.
During the maintenance phase, a proposed change should not be allowed to
substantially increase the complexity, thereby increasing the testing effort
and decreasing maintainability.

The complexity metrics should be generated for each module in the
system. The metrics can be partitioned in several ways (e.g., by CSCI). In
these partitionings, one can see indications of potential problem areas.
These indications can be used to give guidance to the developer on areas where
additional concentration is needed, as well as areas where government test
efforts should be focused, such as code walkthroughs, more comprehensive unit
level testing, or stress testing. Figure 7.8-2 portrays a snapshot in time of
the complexity values for all the modules in a given CSCI. While the majority
of them are within the range of the rules of thumb, it can be seen that
several of them have well exceeded them and should be further scrutinized
through testing and analysis.

Examination of complexity trends over time can also provide useful
insights, especially when combined with other metrics such as design stabili-
ty, the (optional) development progress, etc. For example, late software code
"patches" may cause the complexity of the patched module to exceed an accept-
able limit, indicating that the design rather than the code should have been
changed. It is noted that test resources are better expended on modules that
have a relatively high structural complexity rather than on software that will
reflect a high number of lines of code tested.

Wherever possible, the cyclomatic complexity metric should be computed
for the PDL. The section on rules of thumb describes special interpretation
criteria for the complexity of PDL.

There are several embedded assumptions and known weaknesses in the
complexity metrics. For example, in the computation of McCabe's cyclomatic
complexity, there is no differentiation between the various types of control
flows. A CASE statement (which is easier to use and understand than the
corresponding series of conditional statements) makes a high contribution to
complexity, which is somewhat counterintuitive when one considers that the
corresponding series of IF..THEN..ELSE statements would probably be more
troublesome from the standpoint of testing, modification, and maintenance.
Further, a million straight line instructions are judged to be as complex as a

46

single instruction. Additionally, the interpretation of cyclomatic complexity
will be different for different higher order languages.

There are innumerable ways of defining and counting lines of code. The
somewhat simple definition given in the algorithm above is intended to apply
somewhat equally across the spectrum of procedural languages. It should be
noted that much research is ongoing into methods and tools for counting lines
of code for each language. For example, the Software Engineering Institute is
in the midst of such a research effort. The definition given here should at
least allow historical comparisons to be done on similar implementations.

It is also recognized that percent comment lines is a very language
dependent measure. Additionally, the metric does not address the usefulness
or completeness of the comments. Some self-documenting languages require fewer
comments than an assembly language or a language like FORTRAN. Modern
programming practices (e.g,. the use of meaningful variable names, indenting,
etc.) are often more helpful than archaic programming practices with many
comment lines. Additiot,al complexity metrics for languages like Ada (e.g., to
measure the degree of encapsulation) can lend additional insights into the
software structure.

It is recognized that the complexity metrics are highly oriented towards
procedural languages. When applied to things like artificial intelligence
languages and pure object oriented languages, care must be taken in interpret-
ing the results.

For the preceding reasons and others, the complexity metrics should be
used as a group. They also should be used in conjunction with the metrics for
fault profiles and depth of testing.

Research is being pursued on ways of assessing the complexity of a
design before any code is built. As these metrics evolve, their use should be
pursued, as it is highly desirable to limit the inherent complexity of the
software while in the design phase.

It is also recognized that this metric is often not applied until late
in the life cycle. It is recommended that this metric should be used as soon
as practical (e.g., as code is being developed). Also, it must not be relied
upon as the sole metric to judge quality of the implementation of the design.

In cases of high module cyclomatic complexity, various means exist to
help identify how it may be reduced. These techniques include calculation of
actual complexity and essential complexity. For further details see referenc-
es.

Rules of Thumb:

The criteria presented in Table 7.8-2, which should be applied at the
module level, are widely accepted as industry standards. Any value not
meeting these criteria should cause concern about potential problems in the
specific metric area.

47

Table 7.8-2
Metric Criteria (per module)

cyclomatic complexity <- 10

control flow -0

volume <- 3200

LOC <- 200

% comment lines >- 60 %.

For cyclomatic complexity, the suggested limit is 10 for any module. The
references noted show that the error rate and number of bugs observed for
modules having complexities of less than 10 is substantially lower than those
with complexities greater than 10. A module with complexity greater khan 10
may need to be restructured (if feasible) into several less complex ones. If
the complexity is due to structures like CASE statements, the complexity can
be accommodated. HoweVer, if the high complexity is due to structures like DO
loops and other raw logic, serious attempts should be made to redesign or
subdivide the module.

A more recent approach varies the criteria for cyclomatic complexity
according to life cycle phase. During the design phase it is suggested that
the value not exceed 7 for program design language to allow for expected
growth to a value of 10 during implementation to code.

References:

Software System Testing and Quality Assurance, Beizer, Van Nostrand
Reinhold, 1984.

"Draft Guide for the Use of Standard Dictionary of Measures to Produce
Reliable Software", IEEE Computer Society P982.2/D6, May 1988.

"Structured Testing: A Software Testing Methodology Using the Cyclomatic
Complexity Metric", Thomas J. McCabe, U.S. Department of Commerce, National
Bureau of Standards, NBS Special Publication 500-99, December 1982.

"Design Complexity Metrics", T.J. McCabe & Associates, Inc., May 1988.
"A Software Reliability Study Using A Complexity Measure", Walsh, 1982.
"Measuring Effectiveness and Adequacy of System Testing", Craig,

Conference Proceedings, Software Test and Validation, National Institute for
Software Quality and Productivity, Inc., Sept 87.

"The Complexity Analysis Tool", ARPAD-TR-88005, Oct 88.

48

7.9 Metric: Breadth of Testing.

Purpose/Descrintoon:

Breadth of testing addresses the degree to which required functionality
has been successfully demonstrated as well as the amount of testing that has
been performed. This testing can be called "black box" testing, since one is
only concerned with obtaining correct outputs as a result of prescribed
inputs.

Life Cycle ADDlication:

Begin at end of unit testing.

Algorithm/Graphical Display:

Breadth of testing consists of three different measures, each of which
should be applied against the set of SRS requ .:%?.1ts, the set of IRS require-
ments, and the set of UFD requirements. One measure deals with coverage and
two measures deal with success. These three subelements are portrayed in the
following equation:

reqts tested # reqts passed # reqts passed
--------- x---------- X-------------- M --------------
total # reqts # reqts tested total # reqts

"test coverage" "test success" "overall success"

Breadth of testing "coverage" is computed by dividing the number of
requirements (either SRS, IRS, or UFD) that have been tested (with all
applicable test cases under both representative and maximum stress loads) by
the total number of requirements.

Breadth of testing "test success" can be computed by dividing the number
of requirements (either SRS, IRS, or UFD) that have been successfully demon-
strated through testing by the number of requirements that have been tested.

Breadth of testing "overall success" is computed by dividing the number
of requirements (either SRS, IRS, or UFD) that have been successfully demon-
strated through testing by the total number of requirements.

All three measures of breadth of testing should be tracked throughout
the development process if possible; in actuality, functional testing per CSCI
is normally only done as part of FQT and system level testing. The results of
each must be reported and can be simultaneously displayed either over time
(similar to Figure 7.10-1 in the section on depth of testing) or over key test
events (see Figure 7.9-1) with the use of stacked vertical bar graphs. In
practice, given the typical duration of test events such as FQT, it is useful
to portray breadth of testing over time within the test so that growth of
demonstrated functionality can be assessed. Figure 7.9-1 summarizes breadth

49

of testing over two typical test periods; in actuality, the monthly growth
portrayal should also be generated for each test. It should be pointed out
that test success, as defined in the algorithm above, is not computed against
the same population of requirements as test coverage and overall success.

Breadth of Testing
Graphical Display

Percent of RsQt. CCSCI2)

40

20

FOT T1 OT

COVerage Test Success Overe I SUCCOSS

Figure 7.9-1

It should be noted that any time there is a change in requirements,
breadth of testing must be revisited. A new requirements baseline will
require a recomputation of the breadth of testing metrics.

Data Reauire;,,eits:

number of SRS requirements
number of SRS requirements tested with all planned test cases
number of SRS requirements successfully demonstrated through

testing
number of IRS requirements
number of IRS requirements tested with all planned test cases
number of IRS requirements successfully demonstrated through

testing
for each of four UFD priority levels:

number of UFD requirements

so

number of UFD requirements tested with all planned test
cases

number of UFD requirements successfully demonstrated through
testing

test identification (e.g., FQT, TT, OT)

Freauencv of Reoortina:

monthly throughout functionality and system level testing

Use/InterDrttation:

The coverage portion of breadth of testing provides indications of the
amount of testing performed without regard to success. By observing the trend
of coverage over time, one gets an idea of the extent of full testing that has
been performed.

The success portions of breadth of testing provide indications about
requirements that have been successfully demonstrated. The test success
measure will indicate the relative success based only on the requirements that
have been tested. By observing the trend of the overall success portion of
breadth of testing, one can easily see the growth in successfully demonstrated
functionality.

One of the most innovative aspects of the UFD is the categorization of
requirements in terms of four criticality levels. This approach to user
requirements provides a cornerstone on which to implement the important TQM
tenet of addressing customer satisfaction, and will foster a useful dialogue
between the user and developer as the test process is progressing. With this
approach, the most important requirements can be highlighted. Using this
prioritization scheme, one should partition the breadth of testing metric to
address each criticality level. At various points along the development path,
the pivotal requirements for that phase can be addressed in terms of tracing,
test coverage, and test success.

The test cases to be used for evaluating the success of a requirement
should be developed through the TIWG process in order that sufficient test
cases are generated to adequately demonstrate the requirements. This high-
lights the importance of the concurrent participation of the user, developer,
tester, and evaluator in requirements analysis and test planning. A strong
TIWG process and a healthy amount of user and tester involvement in test
planning will serve to mitigate the subjectivity in assessing whether the
requirements have been satisfied.

It is recognized that under the above method, failing only one test case
results in a requirement not being successfully demonstrated. If sufficient
resources exist, an additional, optional way to address breadth of testing
consists of examining each requirement in terms of the percent of test cases
that have been performed and passed. In this way, partial credit for testing
a requirement can be shown (assuming multiple test cases exist for a require-
ment), as opposed to the all or nothing approach. This method, which is not

51

mandated here due to cost and reporting considerations, may be useful in
providing additional granularity into breadth of testing.

The breadth of testing metrics for coverage and overall success should
be used together and in conjunction with the requirements traceability metrics
(to trace unsuccessfully demonstrated UFD requirements to the appro, rlate
CSCI, and to see the test coverage on successfully traced requirements), the
(optional) development progress metrics, and fault profiles so that problem
areas can be isolated. The breadth of testing metric should also be used in
conjunction with the metrics for depth of testing, requirements stability, and
design stability.

During post deployment software support, this metric should be used with
the requirements traceability metrics to indicate areas which need regression
testing.

It should be noted that some requirements may not be testable until very
late in the testing *process (if at all). For example, a requirement that is
allocated to multiple CSCIs may not be proven out until the final system level
testing.

Rules of Thumb:

The government should clearly specify what functionality should be in
place at each phase of development. This process is obviously system depen-
dent. At each stage of testing (unit through system level stress testing),
emphasis should be placed on demonstrating that a high percentage of the
functionality needed for that stage of testing is achieved. Prior to the
formal government operational test, most functions should be demonstrated
under stress loading conditions.

References:

"Standard Set of Useful Software Metrics Is Urgently Needed, FletGher
J. Buckley, Computer, July 1989.

52

7.10 Metric: DeDth of Testing.

PurDose/DescriDtion: -

The depth of testing metrics provide indications of the extent and
success of testing from the point of view of coverage of possible
paths/conditions within the software. The testing can be called "white box'
testing, since there is visibility into the paths/conditions within the
software.

Life Cycle ADolication:

Begin at CDR. Continue through development as changes occur in either
design, implementation, or testing. Revisit as necessary during POSS.

Alaorithm/Graohical Displav:

Depth of testing consists of three separate measures, each of which is
comprised of one coverage and two success subelements (similar to breadth of
testing).

The path metric for each module is defined as the number of unique paths
in the module that have been successfully executed at least once, divided by
the total number of paths in the module. A path is defined as a logical
traversal of a module, from an entry point to an exit point. If one refers
back to the discussion of the complexity metric, a path is actually a combina-
tion of edges and nodes.

The statement metric for each module is the number of executable
statements in the module that have been successfully exercised at least once,
divided by the total number of executable statements in the module.

The domain metric for each module is the number of input instances that
have been successfully tested with at least one legal entry and one illegal
entry in every field of every input parameter, divided by the total number of
input instances in the module.

The optional decision point metric for each module is the number of
decision points in the module that have been successfully exercised with all
classes of legal conditions as well as one illegal condition (if any exist) at
least once, divided by the total number of decision points. Each decision
point containing an "or* should be tested at least once for each of the
condition's logical predicates.

Figure 7.10-1 portrays test coverage and overall success for the paths
within a CSCI, which is computed as a composite of its module level path
metrics. The graph is somewhat similar to the graph portrayed for breadth of
testing, although the depth of testing metric will typically progress such
quicker than the breadth of testing metric.

53

Depth of Testing
Percent of Paths - C8CIS

100-

80-

60-

40-

20-

0 '
1 2 8 4 6 6 7 8 9 10 1112

Program Month

ooveraoe 9 overall success

rigure 7.10-1

Data Reauirements:

for each module:
CSCI identifier
CSC identifier
CSU identifier
number of paths which have been successfully executed at

least once
number of inputs which have been successfully tested with

one legal entry and one illegal entry
number of statements that have been successfully exercised
number of paths
number of statements
number of input instances
number of decision points (optional)

Freauency of Reoortino:

monthly (if a CSU has been modified or further tested)

Note: In recognition of the effort required to collect and report the
depth of testing metric, the following rules are offered for data collection

54

and reporting. Compute the domain metric always (it is relatively straight-
forward). For the path and statement metrics, if automated tools exist,
compute the metrics. If no automated tools exist, compute the metrics if the
module implements a UFD priority one requirement, or if the complexity rules
of thumb are exceeded for that module.

Use/Interoretation:

The depth of testing metric attacks the issue of test coverage, test
success, and overall success by considering the paths, statements, and inputs
to the software. The elements of test coverage, test success, and overall
success should be used and interpreted in a similar fashion to that described
in the use/interpretation section of the breadth of testing metric. The
trends of these depth of testing metrics over time provide indications of the
progress of successful testing, and also of the sufficiency of the testing.

The metrics are collected at the module or CSU level, but they can be
easily extended to the CSC, CSCI, or system level by simply replacing the term"module" in the algorithm definition above with the term "CSC, or "CSCI," or
"system." Early in the contractor testing process, it makes more sense to
assess depth of testing at the module or CSU level, but later it makes more
sense to consider CSCs and CSCIs.

The depth of testing metrics are typically collected using a combination
of static and dynamic analysis techniques. Static analysis deals with
examinations of the software and related documentation; an example of such a
tool would be a complexity analysis tool used to compute the possible paths
through the software. Dynamic analysis deals with actually executing the
software; an example would be a profiler that tracks the execution of various
paths within the software. Test case generators can be used to aid in the
development of appropriate test cases. Tools are available to help in the
data collection effort; they serve to greatly ease the dynamic analysis
effort.

The depth of testing metrics can be used to focus discussion on those
modules which implement high priority UFD requirements. Ideally, the test
process should initially focus on those modules which incorporate high
priority UFD requirements. One would like to see these modules, as well as
common or shared modules, 'wrung out" early in the test program via the depth
of testing metric.

In addition to addressing test coverage and test success, the domain
metric and the (optional) decision point metric serve to partially address the
robustness of the software. That is, these metrics serve to indicate the
"extent to which the software can withstand the entry of illegal input values.

The depth of testing metrics should be used in conjunction with require-
ments traceability, fault profiles, complexity, and the (optional) development
progress. For example, with complexity, the modules of highest complexity
could be highlighted for testing (e.g., one might want to test those modules
first). Also, the cyclomatic complexity value gives the required number of
test cases needed to exercise all the paths in the software. They must also

55

be used with the breadth of testing metrics to insure that all aspects of

testing are approaching an acceptable state for the government.

Rules of Thumb:

None.

References:

"Standard Set of Useful Software Metrics Is Urgently Neededo, Fletcher
J. Buckley, Computer, July 1989.

56

7.11 Metric: Fault Profiles.

Puroose/Descriotion:

Fault profiles provide insight into the quality of the software, as well
as the developer's ability to fix known faults. It is interesting to note
that these insights actually come from measuring the lack of quality
("faults") in the software. Early in the development process, fault profiles
can be used to measure the quality of the translation of the software require-
ments into the design. Later in the development process, they can be used to
measure the quality of the implementation of the software requirements and
design into code.

Life Cycle Aoolication:

Begin after completion of unit testing (when software has been brought
under developer's configuration control) and continue through POSS.

Alaorithm/Graphical DisDlay:

Plot cumulative number of detected software faults and cumulative number
of closed software faults as a function of time, as shown in Figure 7.11-1.
One plot should be developed for each CSCI and for each priority level, as
defined in the data requirements section below.

One should Rlso plot, on a month by month basis, the number of software
faults that were detected and closed during the month, as shown in Figure
7.11-2.

Calculate average age of closed faults as follows: For all closed STRs,
sum the days between when the STR was opened and the STR was closed. Divide
this sum by the total number of closed STRs.

Calculate average age of STRs as follows: For all STRs, sum the days
between when the fault was opened and either when it was closed or the current
date (if still open). Divide this sum by the total number of STRs.

Relative CSCI status with respect to open faults can be shown as in
Figure 7.11-3. Histograms of open faults by CSCI and priority can be por-
trayed as in Figure 7.11-4.

Finally, another useful display is the average age of STRs over time, as
shown in Figure 7.11-5.

An attempt should be made to screen out duplicate software problems
before formally entering an STR. In cases where it is determined, subsequent
to the formal entry, that an STR is a duplicate, its status should be changed
to duplicate, even though the original problem may not be resolved. When
changing an STR from an open status to a duplicate status, the cumulative
number opened should be decremented for the next reporting period. The
original STR remains open until a fix is developed and verified. It should be
recognized that an extensive number of open STRs that will turn out to be
duplicate may skew the parameters computed above.

57

FaultPrfiles
#Faults

300

0
0 2 4 a S 0 12 14

Program Month

Cumulative Detected -+- Cumulative Closed

Figur~e 7.11-1

S-TRs By -Month
CSCl2, Priority One

Number of STRe

40

20-

10-

0-

Program Month

FigUre 7.11-2

OCI Op' %*A en Age%
(faults still open)

STime Open (week.)

.... * *' ' ' * ' '°.......*' °°' °°"....*

S °.... *.......... ... •. o ° .

4 ... °,.... °. .. .o. . o.. , o.. -...... ... •.. . .

m Priority I • Priority 2 Priority a
SPriority 4 I Priority 5

Fi]gue 7.11-3

Open Age Histogram
(faults still open)

Number of Faulta

100
soo

so
4 O "

20 -.

0"
0-2 2-4 4-6 6- S-10 1012 12-14

"Time Open (weeks)

M cem Priority One

NOWs &I a" of owe" Emits * 6 wee"k

FiguWe 7.11-4

59

Average Age of STis
(open and closed)

Average o. of 81TR (weeks)
10

8"

4-

2.

1 4 5 6 7 8 10 o 12

Program Month

"- Average Age of STRe

Figure 7.11-5

Data ReQuirements:

The following raw data should be derived from all software trouble
reports. These data will be used to calculate higher level statistics
(described later in this section), as well as to support queries generated as
a result of the graphical portrayals.

unique id
date written
descriptive title of problem
detailed description of problem (optional)
priority :

1 - causes mission essential function (or operator's
accomplishment thereof) to be disabled or jeopardizes personnel
safety

2 - causes mission essential function (or operator's
accomplishment thereof) for which there is no work around to be
degraded

3 - causes mission essential function (or operator's
accomplishment thereof) for which there is a reasonable work
around to be degraded

4 - causes operator inconvenience but doesn't affect a
mission essential function

5 - all other errors

60

category :
requirements
design
code
documentation
other

when discovered :
requirements analysis
design review
code and unit test
integration and test
operation/maintenance

status :
open
duplicate
closed
invalid

date detected
date closed
software module
CSCI
software version
effort to fix (man-hours)

The following rolled up statistics are the building blocks for the graphical
portrayals of fault profiles.

For each priority, for each CSCI
cumulative number of STRs
cumulative number of closed STRs
average age of closed STRs
average age of STRs
total number for each category (described above)

Freauencv of Reoortina:

monthly

There are various aspects of fault profiles that can be examined for
insights into quality problems. The most popular type of graphical represen-
tation, portrayed above In Figure 7.11-1, displays detected faults and closed

* (corrected and verified) faults on the same scale. These types of graphs
should be examined for each priority level, and for each major module or CSCI.
Applled during the early stages of development, fault profiles measure the
quality of the translation of the software requirements into the design. STRs
opened during this phase suggest that requirements are not being defined or
interpreted correctly. Applied later in the development process, assuming
adequate testing, fault profiles measure the implementation of the require-
ments and design into code. STRs opened during this stage could be the result
of having an inadequate design to implement the requirements, or a poor

61

implementation of the design into code. An examination of the fault category
should provide indications of these causal relationships; these examinations
should be performed as a matter of course in any analysis of fault profiles.
One should continuously observe the gap between open and closed faults; if a
constant gap or a continuing divergence is observed, especially as a key test
or milestone is being approached, appropriate action should be taken. The
only time the open curve should decrease is when duplicate STRs have been
discovered subsequent to entry, and the number open has been decremented as
described in the algorithm above.

Another use of fault profiles consists of monthly non-cumulative totals
for each CSCI and priority (Figure 7.11-2). This can be compared to the
amount of testing done in those months to provide insights into the adequacy
of the test program.

Open age histograms (Figure 7.11-3 and Figure 7.11-4) can be used to
indicate which CSCIs, which priorities, and which faults are the most trouble-
some. This may serve to indicate that the developing group for that CSCI may
need assistance, whether due to a difficult set of requirements or for some
other cause.

Average open age graphs (Figure 7.11-5) can track whether the open age
of faults is increasing with time, which may be an indication that the
developer is becoming saturated or that some faults are exceedingly difficult
to fix.

Caution must be used in interpreting the fault profiles, as the detec-
tion of errors is closely tied to the quality of the development and testing
process. That is, a low number of detected faults could IndicaLe a good
product from a good process or simply a bad process to start with (e.g., one
with inadequate testing). Conversely, a large number of faults early on in a
program may not be bad (e.g., the developer may have an aggressive test
program, or may be using techniques such as rapid prototyping with heavy user
involvement to wring out the requirements early). A large number of Siks open
in a particular month may be the result of errors detected during a specifica-
tion review, audit, test, or from use of the software in the field. Thus, the
measures cannot be assessed without also considering the measures on breadth
and depth of testing. The fault profiles should also be used in conjunction
with the metrics for complexity, design stability, and requirements stability.

If the cumulative number of closed STRs remains constant over time and a
number of STRs remain open, this may indicate a lack of problem resolution.
The age of the open STRs should be checked to see if they have been open for
an unreasonable period of time. If so, these STRs represent areas of in-
creased risk. The cause for lack of resolution needs to be identified and
corrective action taken.

Once an average STR age has been established, large individual deviations
should be investigated. There are several reasons why STRs may remain open
for a lengthy period of time. One could be that the STR is a result of
identification of an inadequate requirement which needs to be refined and is
undergoing review. An ECP-S may have been written for a problem noted and is

62

waiting resolution. It could also mean that the developer has failed to take
corrective action on the problem. Again, the reasons for lack of problem
resolution need to be identified and corrective action taken. The average
open age of high priority faults should also be examined with respect to the
time remaining to the next major test or milestone. If the average open age
of high priority faults exceeds the time remaining, consideration should be
given to delaying the test or milestone until the problems are resolved.

As an option the following method of assessing test adequacy can be used.
Rome Air Development Center (RADC) conducted wide research on several software
projects and identified the characteristics which have direct impact on system
reliability. RADC-TR-87-171 Volumes I and II, "Methodology for Software
Reliability Prediction" can be used to predict the number of faults expected
to be present per configuration item. Using this information as a guideline,
fault profiles can be compared to these estimates to determine if the "peak
level" of opened STRs is being approached and that the software development
process has matured. As an example, suppose the predicted number of faults is
much higher than the actual number of faults reported. If the test coverage
metrics are low, this suggests that testing is not complete and the remaining
faults are yet to be found. If the test coverage is high this could mean that
the software was well written to start with, or that the test cases used were
not thorough enough. If the prediction is much less than the actual number of
faults, this may indicate a number of problems. The software developer may
have an inadequate development effort, may have encountered unexpected design
difficulties, faulty coding or an especially troublesome module(s). The
requirements stability metric should be checked; if it is high, this may
indicate an immature baseline.

Rules of Thumb:

The government should not accept software for any formal system level
government testing until, at a minimum, all priority one and two faults have
been closed. Furthermore, a large number of lower priority faults should be
examined for a possible cumulative effect on successful test conduct.

If tracking the fault profiles starts early in software development, an
average STR open age of less than three months may be experienced. After
fielding this value can rise, primarily due to the necessary delays typically
experienced in the PDSS process.

References:

AMC Pamphlet 70-14, "Software Quality Indicators", 20 Jan 87.
SEI Quality Subgroup Working Papers, untitled, Nov 1989.
IEEE Standard 982.1-1988, IEEE Standard Dictionary of Measures to Produce

Reliable Software.
IEEE Standard 982.2-1988, IEEE Guide for the Use of IEEE Standard Dictionary

of Measures to Produce Reliable Software.

63

7.12 Metric: Reliability.

PurDose/Description:

The reliability metric is an indicator of how many faults there are in
the software as well as the number of faults expected when the software is
used in its intended environment. An additional measure, Time To Restore,
augments reliability by measuring the impact of unexpected outages.

Life Cycle Apolication:

Begin at CDR.

Algorithm/Graohical Disolay:

Use fault profile metrics throughout development. After turnover to the
government for TT and OT, calculate the system Mean Time Between Hardware/
Software Mission Failure (MTB HW/SW MF) and Mean Time Between Software Mission
Failure (MTB SW MF) of the latest configuration directly only when the
software is being used and stressed in accordance with its Operational Mode
Summary/Mission Profile (OMS/MP). The nature of TT sometimes dictates that
the OMS/MP can not be adhered to. In these cases there are frequently
sufficient data available on each of the system mission essential functions
which comprise the OMS/MP to normalize the observed function failure rates to
the usage proportions described in the OMS/MP to predict how often the
software will fail in the field application. Progress can be tracked using
various reliability growth techniques. Note that unlike fault profiles,
wherein duplicate occurrences of the same software fault are not counted, when
calculating the various MTBF parameters, every occurrence of repeat failures
must be included. "Time" in this application is system operating hours, not
CPU time. A useful supplementary display consists of a Pareto distribution of
each software fault type showing its frequency of occurrence; Figure 7.12-1
portrays a sample Pareto plot.

Time To Restore consists of various measures of the time it takes an
operator to restore mission essential automated capabilities due to failure of
the software. This time includes recovery of lost data and any system
reinitialization that is required to return the system to full functionality..

Due to the specialized nature of some of the above techniques, it is
recommended that the values be provided by either an independent evaluator or
a PM matrix support reliability analyst.

64

Fault Pareto Distribution
Number of Occurrence*

40
3 5 -° ' ' ' • o...ooo,o° •. . . ,

80

2 5 -° ° '' ' , , o.....°.......oo..o............o.............o.........

2 0 - .°..... °.................... °............. ".......... °....... "........... °...........

1 0 • o....o.. o...... ,......

10

0
F8 F2 F4 F5 F1 F3 F7 F8

Fault Name

CSCI3, Priority 1

Figure 7.12-1

Data ReQuirements:

All data requirements from the fault profile metrics.
All reliability, availability, and maintainability incident

data from test
Test identification (e.g. Pre-Production Qualification Test

(PPQT), Reliability Growth Test, Independent Operational Test &
Evaluation (IOTE))

System Mean Time Between Operational Mission Failure (MTBOMF)
requirement

System MTB HW/SW MF requirement
System Mean Time To Repair requirement
Demonstrated point estimate and 80% lower confidence bound on MIB HW/SW

MF
Demonstrated point estimate and 80% lower confidence bound on MTB SW MF
Number of software failure modes and number occurrences of each
Time To Restore (mean, median, and maximum 95th percentile)

Freguency of ReDorting:

Fault profile information - monthly.

65

Contractor TT or Government TT/OT - gather data in real time as inci-

dents occur.

Use/Interoretation:

Use of the fault profile metrics provides indications of the rate at
which faults are being reduced and thus reliability increased. Of course, one
also needs to simultaneously consider the test coverage metrics. The fault
profile information, however, says nothing about how often the faults remain-
ing in the software will be encountered by the user. While many arguments can
be made that Mean Time Between Failure (MTBF) is an inappropriate measure, it
is more than adequate for estimating how often one can expect the software to
"fail" in a field environment as long as inputs are of the type and in
relative proportion to what will be encountered in field use, and modules are
exercised with the relative frequency expected in a tactical environment.
Measuring MTBF only when the system and software are being used in accordance
with the OMS/NP or normalizing mission essential function test data to the
OMS/HP insures the above conditions.

The calculated 80% lower confidence bound on MTB HW/SW HF should be
compared to its requirement. In cases where the demonstrated is below
required, MTB SW MF allows one to determine the contributions of both hardware
and software to system unreliability.

A Pareto distribution will enable the developer to focus corrective
actions on faults which contribute most to software unreliability (i.e., focus
on the significant few (with a high frequency of occurrence) as opposed to the
trivial many).

The calculated mean and median Times To Restore should be compared to
the system Mean Time To Repair requirement. Excessive mean, median, or
individual times can indicate poor design or human factors problems. The
three measures together give an indication of the dispersion of the individual
restoration times.

Rules of Thumb:

No formal criteria are given. However, the government should not accept
the software until the fault profile open anomaly curve flattens out, closure
of anomalies approaches the open anomalies, and a high degree of breadth and
depth of testing have been demonstrated. Do not go to OT until system level
MTB HW/SW HF has either been demonstrated with high confidence in TT or is
projected to exceed the requirement based on late occurring corrective
actions.

References:

AR 702-3, "Army Materiel Systems Reliability, Availability and Maintain-
ability"

TRADOC/AMC Pamphlet 70-11, "Reliability, Availability, and Maintainabili-
ty (RAN) Rationale Report Handbook'

66

8. IMPLEMENTATION CONSIDERATIONS

8.1 Oualifvina Rules.

The suite of metrics must be used on all systems that meet all three of
the following criteria:

1) the system contains computer hardware and software developed and
managed under the auspices of either of the following regulations:

a) AR 70-1, "System Acquisition Policy and Procedures'; or
b) AR 25-3, "Army Life Cycle Management of Information Systems'

2) the system is either :
a) an MSCR acquisition category (ACAT) I, 1I, or III; or
"b) an AIS Class 1, 2, 3, or 4.

3) the system either :
a) supports decision making; or
b) receives or senses analog or digital data, processes it and uses it

to influence external system behavior, including input from soldiers such as
crew controls; or

c) exchanges data with other systems; or
d) stores information for access by soldiers (e.g., target priorities,

digitized maps)

8.2 Grandfathering.

Headquarters, Department of the Army has directed that, beginning on I
June 1992, unless the decision body (ASARC or MAISRC) directs otherwise, the
following grandfathering rules are to be used to decide if an existing program
must implement the metrics set:

1) for qualifying (see above) NSCR systems, the full set of metrics is
required for all systems which are not past MS II.

2) for qualifying (see above) AIS systems, the full set of metrics is
required for all systems which are not past MS III.C (certified effective and
suitable for full fielding).

Note: major product improvement activities (in the post-deployment
phase for MSCR systems, or in the operations phase for AIS systems) which meet
the criteria above will be required to implement the full set of metrics.

8.3 Data Collection.

For most metrics, the data should continue to be collected after
fielding of the system. In particular, software updates developed through a
Life Cycle Software Support Center (LCSSC) must be measured in a similar
fashion as a developmental system. The general rule is to collect the same
basic data that were collected in similar activities prior to Milestone III.

When scanning across all metric data elements, one can observe that some
subelements are identical for different metrics. When reporting the metrics
to the data base (described in Section 12), a smart interface will insulate
the data entry person from having to enter the same information more than
once.

67

The Program Manager has responsibility for seeing that the metric data
elements are collected. In reality, the actual collection will most probably
be done by the developer or IV&V agent. In those cases where the developer is
doing the collection, it is recommended that the IV&V agent should at least
sample some of the more crucial metric data elements for consistency and
correctness.

As the metrics are reported on the periodic basis described herein
(monthly for many metrics), it is entirely possible that certain data elements
may not have changed from the previous reporting period. In these cases, it
will be acceptable for the data entry person to simply report 'no change* for
the particular data element.

To facilitate the collection of the basic data elements, data item
descriptions (DIDs) are being developed. The master set of DIDs will be based
upon the data requirements prescribed for each metric in Section 7. Addition-
ally, a subset of these data requirements will comprise a second set of DIDs,
which will support collection for the metrics data base described in Section
12.

68

8.4 Life Cycle AoDlication.

Figure 8-1 portrays a graphical depiction of the applicability of
metrics throughout the life cycle. Both HSCR and AIS milestones are listed in
the top portion of the chart. Although a waterfall model is portrayed in the
activities line at the top of the chart, the chart can also be applied to
other life cycle models (e.g., the spiral model) by using the specific
activities Identified at the top of the chart as cues to the use of a specific
metric. As is indicated on the chart, development activities during the post-
deployment software support phase require the collection of similar metrics as
would be collected on the same activities during a pre-deployment phase.

Metrics Durina the Life Cycle

Activities Requirements Analysis ;olperDevelo per
Doti lo do Dogaesl end Govt Tetine

Milestones Isa • lAeRmJ II PD AiS US IIS M_11MS sn~ I"S M 1 CDR

Metrics
Management Metrics

Cost p
Schedule i
Comp Resource Utilll
81W Eng Environment

Reqts Metrics
Roqto Traceability a , "
Reqto Stability p .

Quality Metrics
Design Stability
Complexity
Breadth of Testing
Depth of Testing
Fault Profiles
Reliability , i

* During PD8S, continue to apply the same metrics as
were applied during similar activities pro-MS III

* Report at Milestone Review
SApply If prototype software will be used In later phases

Figure 8-1

69

The twelve chosen metrics are felt to provide valuable insight into a
program, especially with regard to demonstrated results and readiness for
test. As such, all should be reported at Program Reviews, In Process Reviews,
and Test Readiness Reviews (both Technical and Operational). Some of the more
detailed metrics and many subelements of the major ones however, are not
suitable for presentation at high level decision reviews such as ASARCs,
MAISRCs, and Defense Acquisition Boards (DABs). Within Figure 8-1, the
diamonds indicate the major decision milestones at which the given metrics
should be reported. In addition to the metrics considered mandatory for a
given milestone, any other metric which indicates the potential for serious
problems should be reported.

70

9. TAILORING

The subject of tailoring of the metric set was exhaustively discussed
during the proceedings of the Measures Subgroup. While there is a school of
thought that believes that the program manager should be allowed to tailor the
metric set to the program under consideration, the vast majority of STEP
participants believe that the only way to implement a metrics program through-
out the Army is to require the collection of a common set of metric data
elements.

Tailoring above and beyond the core set of twelve metrics is certainly
encouraged. For example, the appendices describe two optional metrics that
some groups have found beneficial to use in the past. For a particular
program, the use of any other measure deemed appropriate by the materiel
developer (or by the test and evaluation community as negotiated through the
TIWG) is also encouraged. For example, a particular functional area within
the Army may believe that function points as a metric makes sense for their
applications. Another way of tailoring would be to take the basic data
elements contained in this report and put them together in different ways.
These new ways of combining existing data elements might be useful as an
adjunct to the required methods described herein.

There are also three ways to tailor metrics within the core set. First,
one could report the metrics more frequently than is called for in this
document. For example, if a metric is experiencing turbulence, it may be
desirable to obtain more frequent measurements of progress. The second way to
tailor within the metric set is from the standpoint of depth. It is certainly
allowable to go down to further levels of depth, in addition to the level
described for each metric. For example, in the cost metric, it may be
beneficial to go down deeper in the wcrk breakdown structure, to gain addi-
tional visibility into cost considerations. The third way to tailor within
the metric set is from the standpoint of level of resolution. It is allowable
to go down to a finer resolution, in addition to what is described herein.
For example, where we track a metric by CSCI, it may be desirable in certain
instances to also track the metric by that CSCI's constituent parts.

10. JUSTIFICATION FOR METRIC SET

The Measures Subgroup feels that all the metrics specified in the metric
set meet the criteria set forth in Section 5. In addition, they are consis-
tent with the tenets of total quality management in that they represent both
process and product measures. They also address the areas most commonly
agreed to as needing attention in order to develop *good" software: require-
ments, resources, development process, quality/maturity, and test cover-
age/sufficiency. Table 12-1 illustrates the support that the metrics lend to
the overall software quality program described in DOD-STD-2167A.

The challenge in software development is to make informed, fact-based
management decisions. The metrics serve to act as an early warning system,
highlighting small problems early so that they may be resolved before they
grow into larger, more costly problems.

71

It should be noted that the metrics selected may not be the best set.
To date, none of the metrics in this report have been formally validated in
the sense of scientific experiments showing direct correlation to program
success or failure. However, many of the metrics have been used successfully
on Army and other Service programs. For example, cyclomatic complexity was
used successfully on several programs, including the Howitzer Improvement
Program (HIP) and Backup Computer System. Fault profiles are being used
widely and were beneficial on HIP, Conduct of Fire Trainer and the All Source
Analysis System. At the current time, these metrics comprise what is thought
to be a logical starting point. The philosophy employed by the group was to
move beyond theoretical discussions (which are important but best left to the
academic world) and arguments about relative strengths and weaknesses of each
metric and get on with the process of measuring software.

A period of use and an eventual formal, scientific validation must
follow the mandate to use this set. Lessons learned from that period will be
used to improve the metric set. This process should be iterative, and as such
should be considered both a short term and long term effort.

72

-~4 -m -0 -- m 6 - -

400

.43

041

to.

* -

r4

E-4 0
4 4a

ot

004 U) A. a.U) U

'44

4-0 C

0& 44)6

W) to ag. a. a. 0
igU a

73C

11. COSTS AND BENEFITS

Implementation of a structured approach to collect metric data may
increase the cost of software development, although as the process maturity of
various developers Increases, the cost of a metrics program will decrease. It
might also be argued (by someone with avery narrow perspective) that the
activity of measurement will reduce productivity on a project. However, while
it is true that implementation of a metrics program will add some cost to a
program, given the amount of money the Army spends on software development and
the fact that there seems to be a systemic problem in the timely delivery of
quality software, there is certainly a potential for cost benefit or cost
avoidance (although not measurable at the current time), especially in the
long run.

Experience on the cost of collecting metric data is sketchy. The most
definitive information obtained came from NASA's Software Engineering Labora-
tory, While this is a somewhat different environment for software development
from that of the Army, NASA has over fifteen years of experience in the
collection and analysis of metric data. Their experience suggests that data
collection costs about 2 to 3 percent of the cost of software development.
Data entry and quality control comprises another 6 to 8 percent of the cost,
and analysis adds another 10 to 15 percent to the cost. It is felt that the
last category (analysis) would not be an added burden to Army software
development costs, since the evaluation agencies would absorb this burden.

Also, it cannot be stated that there is evidence that metrics "pay off,"
at least in the monetary sense but it makes logical sense that they would. It
is felt at this point that measurement of software is not only good to do but
in fact necessary. It enables management and decision makers to understand
and gain visibility into the software development process. Also, these same
people need basic data to manage and predict future projects. The state of
the art cannot be advanced without measurement, applied research, and analy-
sis.

12. METRICS DATA BASE

During the recommendations phase of the STEP, the Measures Subgroup
proposed that a centralized database be created to store the data for the
minimum set of metrics to be collected throughout the Army. There were two
reasons for creating the database. First, it would enable decision makers and
evaluators to easily monitor a program's progress at any point in time without
putting an extra burden on a PM during a time when the PM's staff might be
very busy (e.g., in preparing for a milestone review). Second, and most
importantly, it would greatly facilitate the stepwise refinement, formal
validation, and cost benefit analyses of the metrics as data from numerous
projects would be available from one source. The proposal was endorsed by the
Vice Chief of Staff of the Army.

TECOM has volunteered to develop, house, and administer the database. A
TECOM-led contractual effort is ongoing to finalize the metrics database
requirements specification and design document, and to develop the database
(including a prototype for proof of concept).

74

The data are to be collected by the contractor and/or IV&V agent and
input into the database by the PM's Office. In cases where the developer does
the collection, it is recommended that the IMvv agent should at least sample
some of the more crucial metric data elements for consistency and correctness.
The PM would only have access to their project. Program Executive Officers
(PEOs) would only have access to data on the programs under their purview.
Decision makers, testers, assessors, and evaluators would have access to data
on all projects.

13. RECOMMENDATIONS

In addition to the many recommendations specified in the description of
each metric's use, interpretation, and rules of thumb, the following recommen-
dations are made in order to improve the state of the Army in software
development, test, and evaluation.

The metrics must be implemented by force. That is, there must be a
regulatory requirement throughout the Army, and must be used for all systems
(both information systems and tactical/embedded systems) undergoing develop-
ment or a major post-deployment upgrade. The most important requirement,
however, is that the data to be collected must be specified in the RFP and
scope of work (SOW). The contractual language required to obtain these data
needs to be developed.

The Army should continue to monitor (and increase its participation in)
the efforts of the various metric-related working groups being sponsored by
the SEI. These groups consist of nationally recognized experts, and include
many of the key researchers. it is hoped that their efforts, as they near
fruition, can be used to improve the Army's recommended set of metrics
contained in this report.

The Army should make sure this metric definition effort dovetails with
the developing DOD Software Action Plan. The efforts of the Software Action
Plan and the STEP should be complimentary efforts, especially in the critical
area of metric development. To date, there has been some initial coordination
between the two groups.

The Army should avail itself of any opportunities for tri-service
coordination on metrics. It is recognized that the Air Force has been a
leader in many aspects of software evaluation. It is also known that the Air
Force Systems Command is leading an effort to develop a similar set of metrics
as is specified in this report. The Army should monitor this effort. One of
the most important reasons to consider trn-service coordination is that if all
the services were to collect the same data elements, then the validation
process and stepwise refinement of the metric set could be accomplished much
sooner.

The Army-wide data base described in Section 12 should be completed to
track the use of metrics. Such a data base would serve as a repository of the
use of metrics (including cost data), and would be the focal point for efforts
to refine and formally validate the metric set. Also, the existence of such a

75

data base would provide the opportunity for the conduct of cost benefit
analyses.

Finally, the metrics must be used as an entire set. Within the use and
interpretation description of each metric, we have proposed specific ways in
which to look at several metrics together, so as to get a more complete
picture of the state of the software. Also, several metrics have somewhat
limited life cycle applicability, and various metrics are more meaningful at
certain times in the life cycle. Many individuals might also express reserva-
tions about the possible "gaming" of metric data by the developer or contrac-
tor. Using the metrics as an entire set can serve to mitigate these concerns
and risks.

14. CONCERNS

Any serious known limitations for a particular metric were described in
the use and interpretation section for that particular metric. Additional
concerns are specified in the following paragraphs.

One of the primary concerns of the group is that software engineering as
not a mature process. It is widely recognized that the discipline of software
engineering is still evolving, as evidenced by the continual introduction of
new technologies and software development techniques. Within private indus-
try, there is inconsistent application of recognized software development
methodologies and requisite metrics to measure those processes and products.
Within the Army, there does not seem to be discipline with either the use of
software engineering principles or the collection or evaluation of metric
data. The hope of the authors is that the process of measuring software can
help to bring the disciplines of engineering to the process, so that the
process can indeed be referred to as "software engineering."

The concern about the immaturity of software engineering leads to the
next concern. The SEI, which is recognized and chartered as the DOD's leader
to advance the state of software engineering and transition key software
technologies to the DOD, feels that it is too early to definitize "the" set of
metrics. SEI's planned experimentation is aimed at studying the motivation of
the software practitioner, so that the most important factors to measure can
be identified. We are concerned about recommending a set of metrics in thE
face of SEI's concern. However, we recognize the need for continued study and
an iterative process of metric refinement and eventual validation. The
stepwise refinement process should include any findings of the SEL. We feel
strongly that it is important to start measuring the software development
process and associated products. Just to measure by itself should add value
because people will know that they are being monitored. Process improvements
cannot come about until measurements are made of that process and its prod-
ucts.

Several metrics are closely tied to the current generation of languages
(third generation, procedurally-oriented languages) and environments typically
employed by the Army. As mentioned earlier, while some language in the
description of the metrics is tied to the current life cycle, the so-called
"waterfall" model specified in DOD-STD-2167A, the Measures Subgroup holds the

76

firm belief that the metrics can and should be applied to systems using other
life cycle models, including the spiral model, and non-traditional development
techniques such as rapid prototyping and evolutionary development. As we movi
toward applications which use fifth generation languages, computer aided
software engineering (CASE), object-oriented programming, and a wide range of
other techniquas, the current set of metrics will have to be improved.

It must be pointed out that this recommended, minimum set of metrics maj
not be "the set." However, as we have hopefully pointed out throughout this
report, we feel that it represents a logical and good starting point for
departure on a software measurement effort within the Army.

Finally, even if the validation process proves out the metric set as a
truly predictive and valuable tool for program success, many other key
activities beyond the implementation of a metrics program still have to be
performed to guarantee the success of a development effort. Besides the fact
that the metric set is not a silver bullet, it is also recognized that, in
accordance with the spirit of TQM, other process improvements need to be
continuously pursued. As can be readily seen in Table 12-1, while the metric!
do provide considerable support for some quality factors, they are not
sufficient by themselves to ensure a quality program and product.

77

78

APPENDIX A - OPTIONAL METRICS

79

80

APPENDIX A - OPTIONAL METRICS

A.1 Metric: Manpower

PurDose/Description:

This measure provides an indication of the developer's application of
human resources to the developmental program and to maintain sufficient
staffing for completion of the project. It can also provide indications of

• possible problems with meeting schedule and budget. It is used to examine the
various elements involved in staffing a software project. These elements
include the planned level of effort, the actual level of effort, and the
losses in the software staff measured per labor category. Planned manpower

• profiles are derived from the appropriate planning documents submitted to the
government. These are usually provided in the developer's proposal or the
Software Development Plan. The planned level of effort is the number of labor
hours that are scheduled to be worked on a CSCI each month. The planned
levels are compared with the actual over a given time period to give the
government insight into the deviations between them. These deviations can be
monitored to ensure that the developer is meeting the necessary staffing
criteria.

Life Cycle Aoplication:

Track for entire length of development (including PDSS).

81

Al orl thm/Granh ical Di spl ay:

M-anpow-er
Labor Hours of Effort (10000)

1400
_ Plamned

1200 m" Atual

1000.

800o

600-

400"

00
0 2 4 6 8 10 12 14

Program Month

Figure A.1-1

Data Reaulrements:

Notes:
1. Special skills personnel are those individuals who possess specialized

software-related abilities defined as crucial to the success of the particular
system. For example, Ada programmers or artificial intelligence experts might
be considered special skills personnel for one project, but not necessarily
for another prcJect.

2. Experienced personnel are defined as those individuals with a minimum of
three years experience in software development for similar applications.

3. Total personnel are the sum of experienced and inexperienced personnel.
Special skills personnel are counted within the broad categories of experi-
enced and inexperienced, but are also tracked separately.

4. Other categories can certainly be created for aspects of a program which
are deemed worthy of special attention. For many projects, software quality
assurance people might be tracked as a separate category.

82

for each personnel type (total, experienced, special)
labor hours expended each month
number people lost
number people gained
labor hours planned each of month

Freouencv of ReDortina:

monthly

Use/Internretation:

"* The software staff includes, as a minimum, those engineering and
* management personnel directly involved with software system planning, require-

ments definition, design, coding, integration, test, documentation, configura-
tion management, and quality assurance. Losses and gains for each category
specified above should be tracked monthly to indicate potential problem areas.
Personnel who have been replaced are still counted as a loss. High turnover of
experienced personnel can adversely affect project success. Also, for example,
adding many personnel (beyond those numbers planned) late in the development
process may provide an indication of impending problems. Turnover of key
people must also be watched closely.

Significant deviations from planned levels can be used as an indicator
of potential problems with staffing the various software development activi-
ties. Deviations between actual levels and planned can be detected, explained
and corrected before they negatively impact the development schedule. The
losses in the staff can be monitored to detect a growing trend or significant
loss of experienced staff. This indicator assists the government in determin-
ing if the developer has scheduled a sufficient number of employees to produce
the product in the time allotted.

The shape of the staff profile trend curve tends to start at a moderate
level at the beginning of the contract, grow through design, peak at cod-
ing/testing and diminish near the completion of integration testing. Individu-
al labor categories, however, are likely to peak at different points in the
life cycle. The optimum result would show little deviation between the
planned and actual levels for each category with losses kept to a minimum.
Specific attention should be paid to any case where there is a significant
deviation (+/- 10%) between actual and planned. In the case where actual is
more than planned, this may suggest that the developer:

"- underestimated the work involved
"- found out that the task was more complicated than expected
- did not perform the work efficiently
- is ahead of schedule
- is behind schedule and is adding manpower to catch up
- is adding people to make up for a lack of experienced ones

83

If the actual levels are less than planned, this may suggest that the
developer:

- overestimated the work involved
- did not perform the task completely
- the effort was not as complex as expected
- performed the work efficiently
- did not assign adequate manpower to the task
- misinterpreted the task or requirements
- is ahead of schedule

In cases of large deviation the developer should be required to determine
the cause and report any corrective actions necessary.

The manpower metrics are used primarily for project management and do not
necessarily have a direct relationship with other technical and maturity
metrics. For example, manpower levels are usually higher during testing
activities. This does not necessarily reflect an increase in the quality
levels of the product or suggest that the depth of testing metrics will be
higher.

The manpower metrics should be used in conjunction with the development
progress and test coverage metrics.

The value of this metric is somewhat tied to the accuracy of the
development and staffing plan, as well as to the accuracy of the labor
reporting system.

Rules of Thumb:

A high ratio of total to experienced personnel is undesirable. A ratio
of 3:1 is typical.

Significant deviations from the planned staffing profile, as well as a
high turnover rate in any category, should be investigated so as to minimize
risk to the government.

When the developer has expended 80% of their planned or budgeted resourc-
es, it shall be identified and highlighted to the government and be documented
in the monthly reports. Closer attention should then be paid to the remaining
resources.

References:

"Software Reporting Metrics', The Mitre Corporation, ESO-TR-85-145, MTR
9650 Revision 2, November 1985.

"Software Management Indicators, Air Force Systems Coumand, AFSCP 800-
43, January 31, 1986.

"Software Management Indicators, Management Insight',AMC-P 70-13, 31
January 1987.

"Revised Implementation Guidelines for Software Management and Quality
Indicators for Advanced Field Artillery Tactical Data System", 30 Jul 89.

84

A.2 Metric: Development Progress

Puroose/Descri Dt ion:

The development progress metrics provide Indications of the degree of
completeness of the software development effort, and hence can be used to
judge readiness to proceed to the next stage of software development.

Life Cycle AoDlication:

Begin collecting -t PDR and continue for the entire software developmentphase.

* Algorithm/Graphical DisDlav:

(Note: the following calculations can be performed at either the CSC, CSCI, or
system level.)

Compute percent of CSUs 100% designed.
Compute percent of CSUs 100% coded and successfully unit

tested.
Compute percent of CSUs 100% integrated.

DEVELOPMENT PROGRESS
% CSUO

100

Plannd X
-, Aetuel

80 *'.•

so D•-ed.*

40" Iiters

20- .. , • .*

1 2 3 4 6 a 7 a 0 10 11 12
Program Month

Figure A.2-1

85

Additionally, by use of the requirements traceability matrix, one can
plot functionality (which has been developed and verified) versus time as a
measure of development progress.

Data Reouirements:

CSCI/CSC/CSU development, test and integration schedules
number of CSUs per CSCI
number of CSUs 100% designed and reviewed by government
number of CSUs 100% coded and successfully unit tested
number of CSUs 100% integrated into a CSC or CSCI

NOTE: NSuccessfully" tested is defined as completing all test cases (required
test coverage or depth) with no defects. *Integrated* is defined as being
actually and logically connected (in a static sense) with all required
modules. (Dynamic tasking is not considered here).

Freguency of Reporting:

monthly

Use/Interpretation:

The design, coding, unit testing, and integration of CSUs should
progress at a reasonable rate. Plotting the progress in these three catego-
ries versus what was originally planned can give indications of potential
problems with schedule and cost. In certain instances, consideration must be
given to a possible re-baselining of the software (e.g., in an evolutionary
approach) or if one simply must add modules due to changes in the require-
ments.

The development progress metrics should be used with the test coverage
metrics (breadth and depth of testing) to assess the readiness to proceed to a
formal government test. They should also be used with the requirements
traceability metrics so that progress can be tracked in consonance with the
tracing of requirements. Additionally, it can be used with the schedule
metric to help evaluate schedule risk.

The development progress metrics should be used with the manpower
metrics to identify areas where the developer is experiencing problems. Also,
using these metrics with the computer resource utilization metrics can ensure
that the actual utilization is representative of a complete system. Finally,
special attention should be given to the development progress of high complex-
ity CSUs.

These metrics pass no judgement on the achievability of the contractor's
development plan.

Rules of Thumb

One hundred percent (100%) of all CSUs should be designed prior to

proceeding beyond CDR for the appropriate CSCI.

86

One hundred percent (100%) of all CSUs should be coded, successfully
tested, and integrated before proceeding to a formal system level government
test.

References:

"Software Reporting Metrics', The Mitre Corporation, ESD-TR-85-145, MTR
9650 Revision 2, November 1985.

"Software Management Indicators', Air Force Systems Command, AFSCP 800-
43, January 31, 1986.

I

87

88

Acronym Definition

ACAT Acquisition Category
ACWP Actual Cost of Work Performed
AFOTEC Air Force Operational Test and Evaluation Center
AIS Automated Information System
AMC Army Materiel Command
AMCCOM Armament, Munitions, and Chemical Command
AMSAA Army Materiel Systems Analysis Activity
ASAP Army Streamlined Acquisition Program
ASARC Army Systems Acquisition Review Council
ATCCS Army Tactical Command and Control System
BCWP Budgeted Cost of Work Performed
BCWS Budgeted Cost of Work Scheduled

CASE Computer Aided Software Engineering
CDR Critical Design Review
CECOM Communications and Electronics Command
CFSR Contract Funds Status Report
CPU Central Processing Unit
CRU Computer Resource Utilization
CRWG Computer Resource Working Group
CSC Computer Software Component
C/SCSC Cost/Schedule Control System Criteria
CSCI Computer Software Configuration Item
C/SSR Cost/Schedule Status Report
CSU Computer Software Unit
CWBS Contract Work Breakdown Structure

DA Department of the Army
DAB Defense Acquisition Board
DID Data Item Description
DOD Department of DefePse
DP Design Progress

EAC Estimated Cost At Completion
ECP-S Engineering Change Proposal - Software

FCA Functional Configuration Audit
FQT Formal Qualification Test

HDBK Handbook
HW Hardware

"I/O Input / Output
IOTE Independent Operational Test and Evaluation
IPR In Process Review
IRS Interface Requirements Specification
ISEC Information Systems Engineering Command
ISSC Information Systems Support Command

89

Acronym Definition

LAN Local Area Network
LCSSC Life Cycle Software Support Center
LOC Line of Code

MAISRC Major Automated Information Systems Review Council
MCCR Mission Critical Computer Resources
MR Management Reserve
MS Milestone
MSCR Materiel Systems Computer Resources
MTB SW MF Mean Time Between Software Mission Failure
MTB HW/SW MF Mean Time Between Hardware/Software Mission F. oure
MTBF Mean Time Between Failure
MTBOMF Mean Time Between Operational Mission Failure

OMS/MP Operational Mode Summary / Mission Profile
OPTEC Operation Test and Evaluation Command
ORD Operational Requirements Document
OT Operational Test

PCA Physical Configuration Audit
PDL Program Design Language
PDR Preliminary Design Review
PDSS Post Deployment Software Support
PEO Program Executive Officer
PM Program Manager
PPQT Pre-Production Qualification Test

RADC Rome Air Development Center
RAM Random Access Memory
REQTS Requirements
RFP Request For Proposal

SDD Software Design Document
SDP Software Development Plan
SDR System Design Review
SEI Software Engineering Institute
SOW Scope Of Work
SPS Software Product Specification
SRR System Requirements Review
SRS Software Requirements Specification
SRTM Software Requirements Traceability Matrix
SS System Specification
SSR Software Specification Review
SSS System / Segment Specification
STEP Software Test and Evaluation Panel
STD Software Test Description
STP Software Test Plan
STR Software Trouble Report
SW or S/W Software

90

Ws onyllm

TECOM Test and Evaluation Command
TIWG Test Integration Working Group
TQN Total Quality Management
TT Technical Test

UFD Users' Functional Description

VOD Version Description Document
"VS Versus
WBS Work Breakdown Structure

91

DISTRIBUTION LIST

No. of Copies Organization

I Commander
U.S. Army Materiel Command
ATTN: AMCCE-QE
5001 Eisenhower Avenue
Alexandria, VA 22302

2 Commander
U.S. Army Operational Evaluation Command
ATTN: CSTE-ZT, CSTE-ESE-S
Park Center IV
4501 Ford Avenue
Alexandria, VA 22302-1458

Office of'the Deputy Under Secretary of the
Army for Operations Research

ATTN: SAUS-OR
The Pentagon
Washington, DC 20310-0102

2 Software Engineering Institute
Carnegie Mellon University
ATTN: Anita Carleton, Robert Park
Pittsburgh, PA 15213

Director
U.S. Army Test and Evaluation Management Agency
ATTN: DACS-TE (Dr. Foulkes)
The Pentagon
Washington, DC 20310-0102

Director of Information Systems for Command, Control,
Communications, and Computers

Headquarters, Department of the Army
ATTN: SAIS-ADW
The Pentagon
Washington, DC 20310-0107

9

93

DISTRIBUTION LIST

No. of Copies Organization

Aberdeen Proving Ground

2 Commander
U.S. Army Test and Evaluation Command
ATTN: ANSTE-TA, AMSTE-IS-P
Aberdeen Proving Ground, HO 21005

45 Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-A (5 cys)

AMXSY-G (5 cys)
AMXSY-C (7 cys)
AMXSY-CA (12 cys)
ANXSY-R (6 cys)
ANXSY-RE (2 cys)
ANXSY-L (6 cys)
AMXSY-DA (2 cys)

Aberdeen Proving Ground, NO 21005-5071

94

A=llY-CA

Subject : AMSAA Technical Report Number TR-532, "Army Software Test
and Evaluation Panel (STEP) Software Metrics Initiatives
Report"

* Principal Findings : The primary finding is a set of twelve software
metrics for use in measuring and evaluating the state
of software in Army development programs. The set
includes metrics covering quality, requirements, and
management. Each metric is described in terms of a
purpose / description, algorithm, data requirements,
frequency of reporting, use / interpretation, and
rules of thumb. Recommendations are also made
concerning use of the metrics in various phases of the
software and system life cycle.

Main Assumptions : More discipline is needed in managing Army
software development. These metrics provide insight
into the process and product in such a way that
progress is demonstrated before proceeding to the next
phase of development or testing.

Principal Limitations : The twelve metrics have not been formally
validated, although each metric has been used
successfully by some segments of the military software
development community. Further, the set of metrics
represents a logical starting point for the Army
metrics program.

Slope of the Effort : The study involved a group of Army software
experts, including developers, testers, and
evaluators. The effort spanned about two years from
initial meetings to creation of the final report.

Objective : The objective was to develop a minimum set of software
metrics, spanning process and product measures, for
mandatory use on all Army software development programs.

V

B Dasic Approach : Government, industry, and academic experts were
consulted. Also, a literature review was conducted for

* software metrics research and applications. Finally,
sample Army development programs were reviewed for
metrics usage.

Reason f^r Performing the Study or Analysis s The reason for the
study was to support the Army Software Test and
Evaluation Panel (STEP) attempt to bring more
discipline to Army software development efforts.

Impact of the Study : The recommended set of twelve software metrics
has been incorporated into DA Pamphlet 73-1, Part 7,
"Software Test and Evaluation Guidelines."

Sponsor : The Deputy Under Secretary of The Army for Operations

Research (DUSA-OR).

Principal Investigators : Patrick J. O'Neill and Henry P. Betz

Nane/Address/Phone Number Where Comments & Questions Can Be Sent
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-CA (Mr. O'Neill)
Aberdeen Proving Ground, MD 21005-5071
(410) 278-6429

Defense Technical Information Center (DTIC) Accession Number of Final
Report :

Other Than Sponsor, Who Could Benefit From This Study/Information :
Anyone interested in bring more discipline to the
software development, test, and evaluation process.

